

Equipement pour l'enseignement expérimental, scientifique et technique

Ref: P3.3.3.4

Date d'édition : 25.11.2025

P3.3.3.4 Mesures fondamentales pour la définition électrodynamique de l'ampère

LEYBOLD

Le but de l'expérience P3.3.3.4 est la définition électrodynamique de lampère. On définit lintensité du courant en déterminant la force entre deux conducteurs parallèles de longueur infinie, parcourus par le même courant.

Si r est la distance entre les conducteurs, on a la force F par unité de longueur s du conducteur

 $F/s = i0 \cdot l2/2\delta \cdot r$

Dans lexpérience, on utilise deux conducteurs de 30 cm environ, distants de quelques millimètres. On mesure la force F pour différentes intensités I et distances r.

Équipement comprenant :

- 1 314 265 Support de boucle conductrice
- 1 516 33 Boucles conductrices pour la définition de l'ampère
- 1 516 31 Support à hauteur variable
- 1 726 890 Alimentation CC à courant fort 1...32 V/0...20 A
- 1 524 005W2 Mobile-CASSY 2 WLAN
- 1 524 060 Capteur de forces S, ±1 N
- 1 300 02 Pied en V, petit
- 1 300 42 Tige 47 cm, 12 mm Ø
- 1 301 01 Noix Leybold
- 1 501 26 Câble d'expérimentation 32 A, 50 cm, bleu
- 1 501 30 Câble d'expérimentation 32 A, 100 cm, rouge
- 1 501 31 Câble d'expérimentation 32 A, 100 cm, bleu

Catégories / Arborescence

Sciences > Physique > Expériences pour le supérieur > Electricité > Magnétostatique > Actions des forces dans un champ magnétique

Options

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 25.11.2025

Ref: 314265

Support pour boucles conductrices

Le support de boucle permet de relier le capteur de forces (524060) et les boucles conductrices (51634). Il est constitué de deux douilles de 2 mm avec lamelle interne, d'une prise de fixation et de deux torons de cuivre très flexibles pour l'alimentation en tension et en courant.

Caractéristiques techniques : Courant permanent : 10 A ;

temporairement (5 min) max. 20 A

Ref: 51633

Boucles conductrices

Utilisé avec la balance électrodynamique (51632) et le support à hauteur variable (51631), ce matériel permet de mesurer la force exercée entre deux conducteurs parcourus par un courant variable suivant leur écartement et l'intensité du courant qui les traverse.

Caractéristiques techniques :

Courant: max. 10 A

Conducteur 1 Longueur : 300mm Diamètre du fil : 1 mm Connexion : fiches de 2 mm, convient pour une utilisation

avec la balance électrodynamique

Conducteur 2 Longueur : 300mm Diamètre du fil : 1 mm Connexion : douille de 4 mm Diamètre de la tige : 10 mm

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 25.11.2025

Ref: 51631

Support à hauteur variable pour la mesure et le réglage exact de l'écartement d'objets

Pour la mesure et le réglage exact de l'écartement d'objets placés face à face en position verticale, par ex. dans des expériences avec la balance électrodynamique (51632) utilisée avec les accessoires (51637) ou avec les boucles conductrices (51633) pour la définition de l'ampère selon la théorie de l'électrodynamique.

Caractéristiques techniques :

Ouverture pour les tiges : jusqu'à max. 14 mm Ø

Course : max. 30 mm Graduation : 0,2 mm Zéro : réglable

Dimensions du pied : 12 cmx 15 cm

Masse: 0,4 kg

Matériel livré :

1 Support à hauteur variable avec vis de mise à niveau

1 Contrepoids pour les expériences avec la balance électrodynamique pour la définition de l'ampère.

Ref: 726890

Alimentation CC à courant fort 1...32V, 0...20 A

Spécifications:

Sortie:

Tension de sortie réglable : 1 - 32 V CCCourant de sortie réglable : 0 - 20 A

Stabilité de la tension de sortie :

- Charge (0 100 %): 50 mV
- Tension secteur (variations de 170 à 264 V CA) : 20 mV

Stabilité du courant de sortie :

- Charge (10 90 %) 100 mA
- Tension secteur (variations de 170 à 264 V CA) : 50 mA

Ondulation résiduelle :

leybold-didactique.fr

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 25.11.2025

- Ondulation résiduelle tension (rms) : 5 mV

- Ondulation résiduelle tension (crête à crête) : 50 mV

- Ondulation résiduelle courant (rms) : 30 mA

Affichage:

- Affichage de la tension par LED à 3 chiffres (+/-0,2 % + 3 points)

- Affichage du courant par LED à 3 chiffres (+/-0,2 % + 3 points)

Généralités

- Tension d'entrée : 220 - 240 V CA 50/60 Hz

- Courant d'entrée max. : 3,1 A

- Efficacité : 87,00 %

- Fréquence de commutation : 75 - 85 kHz

- Temps de réponse transitoire (50 - 100 %) : 1,5 ms

- Contrôle du facteur de puissance : correction du facteur de puissance >0,95 pour une charge optimale

- Refroidissement : ventilateur thermo-commandé

- Circuits de protection contre la surcharge, protection contre les courts-circuits en mode CC,

- Protection contre la surtension, protection contre la surchauffe

Fonctions supplémentaires

- 3 valeurs de tension et de courant définies par l'utilisateur, télécommande du courant et de la tension ainsi que sortie ON/Off

- Température de service : 0 ... +50°C; RH < 70 %

- Température de stockage : -10 ... +60 °C; RH < 80 %

- Dimensions (I x H x P) : 200 x 90 x 255 mm

- Masse : 2,6 kg

Ref: 524005W2

Mobile-CASSY 2 WiFi Appareil de mesure polyvalent interfaçable avec écran couleurs 3.5" Tension +/-01V...+/-30V, Courant +/-0.03...+/-3A, 2x ports capteurs CASSY, 1 température typ K

Appareil universel portatif pour les travaux pratiques :

Grande affichage des valeurs mesurées

Reconnaissance automatique des capteurs , compatible avec tout les capteurs - CASSY et les capteurs M . Douilles de sécurité de 4 -mm pour U, I, P et E aussi bien un connecteur intégré Type K pour la mesure de la

température.

Manipulation intuitive par roue sensitive

Enregistrement rapide des valeurs mesurées de manière sélective avec enclenchement (Trigger) et (avance rapide) (Peut être utilisé comme Oscilloscope)

Représentation graphique et exploitation (Par exemple libre allocation des axes , Zoom , Ajustement des lignes) Connecteur-USB pour la présentation et l'évaluation sur PC à travers I 'assistance complète de CASSY Lab 2 (524 220)

Connecteur - USB pour simple transport des données de mesures et capture d'écran aussi sans PC Avec des pieds de montage très pratique Avec WLAN intégré

Caractéristiques techniques :

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 25.11.2025

Ecran d'affichage: 9 cm(3,5"), QVGA, couleur, clair (réglable jusqu'a 400 cd/m²)

Entrées : 3 (utilisées simultanément)

Entrée A: U ou capteur CASSY ou capteur M Entrée B: I ou capteur CASSY ou capteur M

Entrée :température

Gamme de mesure $U : \pm 0.1/\pm 0.3/\pm 1/\pm 3/\pm 10/\pm 30 \text{ V}$ Gamme de mesure $I : \pm 0.03/\pm 0.1/\pm 0.3/\pm 1/\pm 3 \text{ A}$

Gamme de mesure ? : -200 ... +200 °C / -200 ... +1200 °C

Gamme de mesure : 2 chacune , pour capteur CASSY et capteur M

Taux d'échantillonage : max. 500.000 valeurs/s Résolution des entrées analogiques : 12 Bits Résolution des entrées Temporisateurs : 20 ns

Haut parleur : Tonalité intègré et Tube compteur-GM (chacune commutable)

Stockage de données : micro carte SD intégré pour plus de millier de données de mesure et capture d'écran.

WLAN: 802.11 b/g/n comme point d'accès ou client (WPA/WPA2)

Server VNC: Intégré

Port USB: 1 pour une connexion clé USB et un PC

Capacité de l'accumulateur : 14 Wh (type AA, échangeable)

Durée de charge de l'accumulateur : 8 Heures en fonctionnement , plusieurs années en Standby

Verrou Kensington : Possibilité de connexion intégré pour sécurité contre vol.

Dimension: 175 mm x 95 mm x 40 mm

Matériel livré:

Mobile-CASSY 2 WLAN

Chargeur avec transformateur de sécurité selon la norme DIN EN 61558-2-6

Capteur de température NiCr-Ni Guide de démarrage rapide

En option:

Adaptateur de charge pour plusieurs Mobile-CASSY 2 (524 0034) comme accessoire disponible. Câble USB 6890605

Ref: 524060

Capteur de force S, ±1 N

Gammes de mesure : ±10/±30/±100/ ±300mN, ±1N

Pour mesurer des forces (par ex. électrostatiques) de $\pm 1N$ avec CASSY (524013, 524006, 524005W, 524018) ou l'instrument de mesure universel Physique (531835). Avec deux lames souples à quatre jauges extensométriques montées en pont.

Caractéristiques techniques :

Gammes de mesure : $\pm 10/\pm 30/\pm 100/\pm 300$ mN, ± 1 N Compensation : $\pm 2,5$ N dans chaque gamme de mesure

Résolution : 0,1% de la gamme de mesure (suivant l'emplacement)

Connexion: connecteur Sub-D15

Longueur du câble : 1 m

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 25.11.2025

Dimensions: 14,4 cm x 4 cm x 4 cm

Masse: 360 g

Ref : 30002 Pied en V, 20cm

Pour des montages très stables même en cas de charge unilatérale.

Perçage à rainure longitudinale et vis à garret dans la barre transversale et au sommet.

Perçages filetés à l'extrémité des branches pour vis calantes servant à l'ajustage.

Fourni avec une paire de vis calantes et un embout en forme de rivet pour le perçage au sommet.

Caractéristiques techniques :

- En forme de V

- Ouverture pour les tiges et les tubes : 8 ... 14 mm

- Longueur des côtés : 20 cm

- Gamme d'ajustage par vis de calage : 17 mm

- Masse : env. 1,3 kg

Ref: 30042

Tige 47 cm, 12 mm de diamètre, en acier inox massif, résistant à la corrosion

Caractéristiques techniques :

- Diamètre : 12 cm - Longueur : 47 mm

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 25.11.2025

Ref : 30101 Noix Leybold

Pour attacher solidement et assembler des tiges et des tubes ainsi que pour fixer des plaques, ou encore servir de cavalier pour le petit banc optique (460 43).

Les éléments à fixer sont serrés par deux vis papillon dans le logement en forme de prisme.

Caractéristiques techniques :

Ouverture pour les tiges : 14 mmOuverture pour les plaques : 12 mm

Ref: 50126

Câble d'expérience, 50 cm, bleu

À utiliser dans des circuits très basse tension ; toron souple en PVC, fiche avec douille axiale à reprise arrière entièrement isolée ; avec soulagement des efforts de traction.

Caractéristiques techniques :

Fiche et douille : 4mm Ø (nickelées) Section du conducteur : 2,5mm² Courant permanent : max. 32A Résistance de contact : 1,8mO

Longueur: 50cm

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 25.11.2025

Ref: 50130

Câble d'expérience, 1 m, rouge

À utiliser dans des circuits très basse tension ; toron souple en PVC, fiche avec douille axiale à reprise arrière entièrement isolée ; avec soulagement des efforts de traction.

Caractéristiques techniques :

Fiche et douille : 4mm Ø (nickelées) Section du conducteur : 2,5mm² Courant permanent : max. 32A Résistance de contact : 1,8mO

Longueur: 100cm

Ref: 50131

Câble d'expérience, 1 m, bleu

À utiliser dans des circuits très basse tension ; toron souple en PVC, fiche avec douille axiale à reprise arrière entièrement isolée ; avec soulagement des efforts de traction.

Caractéristiques techniques :

Fiche et douille : 4mm Ø (nickelées) Section du conducteur : 2,5mm² Courant permanent : max. 32A Résistance de contact : 1,8mO

Longueur: 100cm

Produits alternatifs

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 25.11.2025

Ref: P3.3.3.1

P3.3.3.1 Mesure de la force sur des conducteurs parcourus par un courant

dans le champ magnétique d'un aimant en fer à cheval

Dans l'expérience P3.3.3.1, les boucles conductrices se trouvent dans le champ magnétique dun aimant en fer à cheval.

La force F est mesurée en fonction de lintensité du courant I, de la longueur du conducteur s et de langle á entre le champ magnétique et le conducteur.

La relation suivante est confirmée

 $F = I \cdot s \cdot B \cdot \sin a$

Équipement comprenant :

- 1 510 22 Aimant en fer à cheval, grand, avec joug
- 1 314 265 Support de boucle conductrice
- 1 516 34 Boucles conductrices pour la mesure de la force
- 1 726 890 Alimentation CC à courant fort 1...32 V/0...20 A
- 1 524 005W2 Mobile-CASSY 2 WLAN
- 1 524 060 Capteur de forces S, ±1 N
- 1 300 02 Pied en V, petit
- 1 300 42 Tige 47 cm, 12 mm Ø
- 1 301 01 Noix Leybold
- 1 501 30 Câble d'expérimentation 32 A, 100 cm, rouge
- 1 501 31 Câble d'expérimentation 32 A, 100 cm, bleu

Ref: P3.3.3.2

P3.3.3.2 Mesure de la force sur des conducteurs parcourus par un courant

dans un champ magnétique homogène - tracé avec CASSY

Dans l'expérience P3.3.3.2, on produit un champ magnétique homogène avec un électroaimant à noyau en U et garniture de pièce polaire.

On mesure la force F en fonction de lintensité du courant I.

Les résultats des mesures pour différentes longueurs de conducteurs s sont répertoriés et exploités dans un graphique récapitulatif.

Équipement comprenant :

1 562 11 Noyau en U avec joug

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 25.11.2025

2 562 14 Bobine à 500 spires

1 562 25 Garniture de pièces polaires

1 314 265 Support de boucle conductrice

1 516 34 Boucles conductrices pour la mesure de la force

1 524 013 Sensor-CASSY 2

1 524 220 CASSY Lab 2

1 524 0431 Adaptateur 30 A

1 524 060 Capteur de forces S, ±1 N

1 531 183 Multimètre numérique 3340

1 521 488 Alimentation électrique AC/DC 0...12 V/3 A

1 726 890 Alimentation CC à courant fort 1...32 V/0...20 A

1 300 02 Pied en V, petit

1 300 42 Tige 47 cm, 12 mm Ø

1 301 01 Noix Leybold

3 501 26 Câble d'expérimentation 32 A, 50 cm, bleu

2 501 30 Câble d'expérimentation 32 A, 100 cm, rouge

2 501 31 Câble d'expérimentation 32 A, 100 cm, bleu

1 En complément : PC avec Windows XP/Vista/7/8/10 (x86 ou x64)

Ref: P3.3.3.3

P3.3.3.3 Mesure de la force sur un conducteur parcouru par un courant

dans le champ magnétique d'une bobine sans fer - tracé avec CASSY

On utilise une bobine sans fer dans l'expérience P3.3.3.3 pour produire le champ magnétique.

Le champ magnétique est calculé à partir des paramètres de la bobine et on le compare avec la valeur obtenue à partir de la mesure de la force.

Équipement comprenant :

1 314 265 Support de boucle conductrice

1 516 34 Boucles conductrices pour la mesure de la force

1 516 244 Bobine de champ, d = 120 mm

1 516 249 Support pour tubes et bobines

1 524 013 Sensor-CASSY 2

1 524 220 CASSY Lab 2

1 524 0431 Adaptateur 30 A

1 524 060 Capteur de forces S, ±1 N

1 521 546 Alimentation CC 0...16 V/0...5 A

1 726 890 Alimentation CC à courant fort 1...32 V/0...20 A

1 300 02 Pied en V, petit

1 300 42 Tige 47 cm, 12 mm Ø

1 301 01 Noix Leybold

1 501 26 Câble d'expérimentation 32 A, 50 cm, bleu

2 501 30 Câble d'expérimentation 32 A, 100 cm, rouge

2 501 31 Câble d'expérimentation 32 A, 100 cm, bleu

1 En complément : PC avec Windows XP/Vista/7/8/10 (x86 ou x64) SYSTEMES DIDACTIQUES s.a.r.l.

Systèmes Didactiques s.a.r.l www.systemes-didactiques.fr

LEYBOLD®

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 25.11.2025