

Ref: P2.6.2.1

du moteur à air chaud

Date d'édition: 13.12.2025

P2.6.2.1 Détermination calorique des pertes par friction

LEYBOLD

Pour déterminer le travail de frottement WF, on mesure au cours de l'expérience P2.6.2.1 lélévation de température TF de leau de refroidissement, pendant que le moteur à air chaud a sa culasse ouverte et est entraîné par un moteur électrique.

Équipement comprenant :

- 1 388 182 Moteur à air chaud
- 1 388 221 Détermination de la puissance, accessoires pour le moteur à air chaud
- 1 347 38 Moteur d'expériences 93 VA
- 1 521 547 Alimentation CC 0...30 V/0...5 A
- 1 575 471 Compteur S
- 1 337 46 Barrière lumineuse en U
- 1 501 16 Câble de connexion, à 6 pôles, 1,50 m
- 1 313 27 Chronomètre manuel, 60s/0,2s
- 1 382 35 Thermomètre, -10...+50 °C/0,1 K
- 1 300 02 Pied en V, petit
- 1 300 41 Tige 25 cm, 12 mm Ø
- 1 590 06 Bécher gradué SAN, 1000 ml
- 1 500 641 Câble de connexion de sécurité, 100 cm, rouge
- 1 500 642 Câble de connexion de sécurité, 100 cm, bleu
- 1 388 181 * Pompe submersible
- 1 521 231 * Transformateur variable TBT 3/6/9/12 V
- 2 667 194 * Tuyau silicone 7 mm Ø, 1 m
- 1 604 3131 * Bidon à col large 10 l

Les articles marqués d'un * ne sont pas obligatoires, mais sont recommandés pour la réalisation de l'expérience.

Catégories / Arborescence

Sciences > Physique > Expériences pour le supérieur > Chaleur > Cycle thermodynamique > Moteur à air chaud: essais quantitatifs

Options

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 13.12.2025

Ref: 388182

Moteur à air chaud (cycle de Stirling) à refroidissement par eau

Pour la démonstration et l'étude quantitative de cycles thermodynamiques dont la réversibilité peut être mise en évidence.

Modes de fonctionnement :

en moteur thermique, puissance de 10 W environ

en pompe à chaleur, température finale accessible de +100 °C environ

en machine frigorifique, température la plus basse possible de -30 °C environ

Caractéristiques techniques : Cylindrée: env. 150 cm3

Rapport de compression : env. 1 : 2 Puissance de chauffe : 300 W Dimensions: 50 cm x 26 cm x 70 cm

Masse: 15 kg

Matériel livré:

Appareil de base opérationnel, avec volant d'inertie et cylindre de travail Couvre-culasse avec joint fileté pour tube à essais ou thermomètre Jeu de 10 tubes à essais Courroie d'entraînement Petite poulie Barre de section carrée Flacon d'huile silicone, 20 ml

Ref: 388221

Détermination de la puissance, accessoires pour le moteur à air chaud

avec frein prony, disque mesure de vitesse, T pour mesure de température, thermomètre et résistance

Pour la détermination quantitative du bilan des puissances, du freinage mécanique, de la mesure sans contact de la vitesse de rotation, de mesure du débit et de la température du flux d'eau de refroidissement ainsi que pour la compensation électrique de la puissance frigori À utiliser avec le moteur à air chaud, 388 182. de la puissance frigorifique.

Caractéristiques techniques : Enroulement chauffant: 10 V/3 A

Thermomètre Gamme de mesure : +10 ... +40 °C Graduation : 1 K SYSTEMES DIDACTIQUES s.a.r.l.

Date d'édition: 13.12.2025

Longueur du levier de freinage : 50 cm Diamètre du disque à trous : 160 mm

Matériel livré:

Levier de freinage avec moyeu (frein de Prony)

Disque à trous avec aimant

Enroulement chauffant avec thermomètre

Cuve à circulation de l'eau de refroidissement

Ref: 34738

Moteur d'expériences 93 W, 1.6 Nm, vitesse nominale 495 tr/min, alimentation 0...30V / 0...5A

Nécéssite l'alimentation 521547

Usage universel en association avec l'alimentation CC, 0...30 V/0...5 A (521 547).

particularités:

- Réglage continu de la vitesse jusqu'à un arrêt presque total, indépendant de la charge, asservi.
- Couple de démarrage puissant, limitation de la régulation pour un couple nominal double.
- Commutateur intégré pour le fonctionnement dans le sens horaire et antihoraire
- Arbre de transmission perpendiculaire à l'arbre moteur réglable à volonté par pas de 45°
- Mandrin à 3 mâchoires à grande capacité de serrage, possibilité de monter une poulie à trois gorges avec rainure.
- Moteur à courant continu fonctionnant dans le sens horaire et antihoraire, à aimant permanent fixé dans un bloc métallique massif avec perçages pour tiges support et pinces de table.
- Livré avec poulies à trois gorges, courroie trapézoïdal, courroie torique, clé de serrage et pince de table.

Caractéristiques techniques:

- Couple nominal: 1,6 Nm à l'arbre de transmission (26,9 Ncm à l'arbre moteur)
- Vitesse nominale : 495 tr/min
 Rapport de réduction : 6,7 : 1
 Puissance délivrée : 84 W
- Écartement des mâchoires du mandrin : 1,5 à 13 mm

Date d'édition: 13.12.2025

Ref: 521547

Alimentation CC 0...30 V / 0....5 A pour moteur 34738

Ref: 575471

Compteur S, chronomètre, fréquence mètre, compteur pour tube GM

S'utilise en travaux pratiques pour compter les impulsions de tubes compteurs, les taux d'impulsions ou tout autre signal électrique, ainsi que pour mesurer le temps ou la fréquence.

Avec affichage à LED de 5 chiffres, haut-parleur interne, entrée tube compteur avec alimentation haute tension intégrée, 2 entrées barrières lumineuses ; commande par touches.

Caractéristiques techniques :

- Affichage : LED, 5 chiffres
- Gammes de mesure :
 - Fréquence : 0 ... 99999Hz
 - Temps: 0 ... 99,999ms, 0 ... 99999s
- Temps de porte pour tube compteur : définis 10/60/100s ; sélectionnables jusqu'à 9999s
- Tension de tube compteur intégrée : 500V
- Entrées et sorties :
 - Entrée tube compteur : douille coaxiale
 - Entrées ou sortie d'impulsions : douilles de sécurité de 4 mm
 - Entrées barrières lumineuses : douilles DIN hexapolaires
- Alimentation: 12V CA/CC par adaptateur secteur (fourni avec l'appareil)
- Dimensions: 20,7cm x 13cm x 4,5cm
- Masse: 0,4kg

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 13.12.2025

Ref: 50116

Câble connexion, 6 pôles, 1,5 m

Avec connecteurs hexapolaires aux deux extrémités / Courant: 1 A max par brin

Caractéristiques techniques : Courant : max. 1A par brin

Ref: 31327

Chronomètre portatif manuel avec boîte de protection Graduation: 60 s, précision lecture 0.2s; 30 min, diamère 5 cm

Caractéristiques techniques:

Gamme de mesure du cadran : 30 min

Précision de lecture : 0,2 s

Graduation du cadran : 60 s/30 min

Diamètre: 5 cm

Ref: 38235

Thermomètre -10 à +50°C

Graduation: 0,1 K - Longueur 45 cm - Diamètre 10 mm

Avec échelle en verre opaque et capillaire.

Caractéristiques techniques :

Gamme de mesure : -10 ... +50 °C

Graduation: 0,1 K Longueur: 45 cm Diamètre: 10 mm Charge: toluène

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 13.12.2025

Ref : 30002 Pied en V, 20cm

Pour des montages très stables même en cas de charge unilatérale.

Perçage à rainure longitudinale et vis à garret dans la barre transversale et au sommet.

Perçages filetés à l'extrémité des branches pour vis calantes servant à l'ajustage.

Fourni avec une paire de vis calantes et un embout en forme de rivet pour le perçage au sommet.

Caractéristiques techniques :

- En forme de V

- Ouverture pour les tiges et les tubes : 8 ... 14 mm

- Longueur des côtés : 20 cm

- Gamme d'ajustage par vis de calage : 17 mm

- Masse : env. 1,3 kg

Ref : 30041 Tige 25 cm, 12 mm de diamètre

En acier inox massif, résistant à la corrosion.

Caractéristiques techniques :

- Diamètre : 12 cm - Longueur : 25 mm

Date d'édition : 13.12.2025

Ref: 59006

Bécher en plastique, 1000 ml, Graduation : 10 ml Parfaitement transparent, avec graduations en relief.

Ref: 500641

Câble d'expérimentation de sécurité, 100 cm, rouge

Section du conducteur : 2,5mm² souple, Courant permanent : max. 32A

À utiliser dans des circuits basse tension, souple; avec une fiche de sécurité et une prise de sécurité axiale aux deux extrémités. Rouge.

Caractéristiques techniques :

Section du conducteur : 2,5mm²
Courant permanent : max. 32A

- Longueur: 100cm

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 13.12.2025

Ref: 500642

Câble d'expérimentation de sécurité, 100 cm, bleu

Section du conducteur : 2,5mm² souple, Courant permanent : max. 32A

À utiliser dans des circuits basse tension, souple; avec une fiche de sécurité et une prise de sécurité axiale aux deux extrémités.

Bleu.

Caractéristiques techniques :

Section du conducteur : 2,5mm²
Courant permanent : max. 32A

- Longueur: 100cm

Ref: 388181

Pompe submersible, 9...12 V

Fonctionnement sous 12 V 30 minutes, ou fonctionnement continu sous 6..9 V

À usage universel ; également utilisable comme pompe de circulation pour assurer le refroidissement de l'eau du moteur à air chaud (388182).

Caractéristiques techniques :

Raccords de tuyauterie: 7 mm / 12 mm

Connexion: fiche de 4 mm

Puissance: max. 12 (continu 6 ... 9) V DC /0,6 ... 1,7 A

Date d'édition : 13.12.2025

Ref: 521231

Transformateur variable TBT 3/6/9/12 V CC et CA, 3A

Alimentation pour les expériences simples en électricité et en électronique. Tension de sortie réglable par paliers ; protégée contre les surcharges.

Caractéristiques techniques :

Tensions de sortie : 3/6/9/12V CA et CC

Charge admissible: 3A

Connexion: deux paires de douilles de 4 mm pour CA et CC

Isolement électrique : transformateur de sécurité conforme à la norme DIN EN 61558-2-6

Protection : fusible thermique Puissance absorbée : 60VA Alimentation : 230V, 50/60Hz Dimensions : 21cm x 9cm x 17cm

Masse: 2,6kg

Ref: 667194

Tuyau en silicone, Ø int. 7 x 1,5 mm, 1 m

En caoutchouc de silicone, transparent, de qualité alimentaire, thermorésistant de -60°C à 200°C, selon DIN 40268.

Caractéristiques techniques : Diamètre intérieur: 7 mm Épaisseur de paroi : 1,5 mm

Longueur: 1 m

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 13.12.2025

Ref: 6043131

Bidon à col large Capacité. 10 I

Ref: 33746

Barrière lumineuse, IR

Barrière lumineuse de précision avec source à infrarouges pour la commande d'appareils de comptage et de mesure du temps pour l'expérimentation avec des corps en mouvement, par ex. pour l'étude du mouvement sur le rail, de la chute libre, des oscillations d'un pendule, de ressorts à lame ou de cordes.

Connexion à CASSY via l'adaptateur Timer (524034) ou au Timer S (524074).

Se fixe avec une noix ou un aimant de maintien. Fixation possible sur des profilés à section carrée.

Témoin de mise sous tension (LED).

Caractéristiques techniques : Précision de mesure: 0,1 mm

Fréquence de commutation: max. 5 kHz

Sortie du signal et alimentation en tension: par douille multiple

Ouverture de l'armature en U: 110 mm Profondeur de l'armature en U: 160 mm

Connexion: 9 ... 25 V CC ou 6 ... 15 V CA par douille multiple (pour 50116)

Consommation: 110 mA

Produits alternatifs

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 13.12.2025

Ref: P2.6.2.2

P2.6.2.2 Détermination du rendement du moteur à air chaud comme moteur thermique

Au cours de l'expérience P2.6.2.2, on détermine le rendement

c = W / W + Q2

du moteur à air chaud utilisé comme moteur thermique.

Le travail mécanique W cédé à chaque cycle à laxe peut être calculé daprès le couple de rotation extérieur N dun frein dynamométrique de Prony qui ralentit le moteur à air chaud à la vitesse de rotation f. La quantité de chaleur Q2 cédée correspond à une élévation de température T dans leau de refroidissement.

Équipement comprenant :

- 1 388 182 Moteur à air chaud
- 1 388 221 Détermination de la puissance, accessoires pour le moteur à air chaud
- 1 562 11 Noyau en U avec joug
- 1 562 121 Agrafe d'assemblage avec pince à ressort
- 1 562 21 Bobine secteur à 500 spires
- 1 562 18 Bobine très basse tension, 50 spires
- 1 575 471 Compteur S
- 1 337 46 Barrière lumineuse en U
- 1 501 16 Câble de connexion, à 6 pôles, 1,50 m
- 1 531 120 Multimètre LDanalog 20
- 1 531 130 Multimètre LDanalog 30
- 1 313 27 Chronomètre manuel, 60s/0,2s
- 1 314 141 Dynamomètre de précision, 1,0 N
- 1 382 35 Thermomètre, -10...+50 °C/0,1 K
- 2 300 02 Pied en V, petit
- 1 300 41 Tige 25 cm, 12 mm Ø
- 1 300 42 Tige 47 cm, 12 mm Ø
- 1 300 51 Tige en équerre, 90°
- 2 301 01 Noix Leybold
- 1 590 06 Bécher gradué SAN, 1000 ml
- 3 342 63 Masses marquées de 50 g
- 1 500 421 Câble de connexion 19 A, 50 cm, rouge
- 1 500 422 Câble de connexion 19 A, 50 cm, bleu
- 3 501 33 Câble d'expérimentation 32 A, 100 cm, noir
- 1 388 181 * Pompe submersible
- 1 521 231 * Transformateur variable TBT 3/6/9/12 V
- 2 667 194 * Tuyau silicone 7 mm Ø, 1 m
- 1 604 3131 * Bidon à col large 10 l

Les articles marqués d'un * ne sont pas obligatoires, mais sont recommandés pour la réalisation de l'expérience.

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 13.12.2025

Ref: P2.6.2.3

P2.6.2.3 Détermination du rendement du moteur à air chaud comme machine frigorifique

Dans l'expérience P2.6.2.3, on détermine le rendement

c = Q2 / Q1 - Q2

du moteur à air chaud utilisé comme machine frigorifique.

Pour cela, le moteur à air chaud a sa culasse fermée et est entraîné par un moteur électrique. On détermine Q1 comme lénergie électrique de chauffage qui maintient la température de la culasse constante et égale à la température ambiante.

Équipement comprenant :

- 1 388 182 Moteur à air chaud
- 1 388 221 Détermination de la puissance, accessoires pour le moteur à air chaud
- 1 347 38 Moteur d'expériences 93 VA
- 1 521 547 Alimentation CC 0...30 V/0...5 A
- 1 521 546 Alimentation CC 0...16 V/0...5 A
- 1 575 471 Compteur S
- 1 337 46 Barrière lumineuse en U
- 1 501 16 Câble de connexion, à 6 pôles, 1,50 m
- 1 313 27 Chronomètre manuel, 60s/0,2s
- 1 382 35 Thermomètre, -10...+50 °C/0,1 K
- 1 300 02 Pied en V, petit
- 1 300 41 Tige 25 cm, 12 mm Ø
- 1 590 06 Bécher gradué SAN, 1000 ml
- 2 501 33 Câble d'expérimentation 32 A, 100 cm, noir
- 1 500 641 Câble de connexion de sécurité, 100 cm, rouge
- 1 500 642 Câble de connexion de sécurité, 100 cm, bleu
- 1 388 181 * Pompe submersible
- 1 521 231 * Transformateur variable TBT 3/6/9/12 V
- 2 667 194 * Tuyau silicone 7 mm Ø, 1 m
- 1 604 3131 * Bidon à col large 10 l

Les articles marqués d'un * ne sont pas obligatoires, mais sont recommandés pour la réalisation de l'expérience.

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 13.12.2025

Ref: P2.6.2.4

P2.6.2.4 Diagramme pV du moteur à air chaud comme moteur thermique

Tracé et exploitation avec CASSY

Au cours de lexpérience P2.6.2.4, on trace le diagramme pV du moteur à air chaud en tant que moteur thermique à laide de l'interface CASSY : un capteur de pression mesure la pression p dans le cylindre en fonction du temps t et un capteur de déplacement enregistre la position s du piston moteur à partir de laquelle le volume V enfermé est calculé.

Les données mesurées sont directement représentées sur lécran dans un diagramme pV. Pour une exploitation ultérieure, on calcule le travail mécanique

W = - dV

réalisé sous forme de frottements par le piston à chaque cycle, puis on en déduit la puissance mécanique

 $P = W \cdot f$

f : vitesse de rotation à vide

que lon reporte ensuite dans un diagramme en fonction de la vitesse de rotation à vide.

Équipement comprenant :

- 1 388 182 Moteur à air chaud
- 1 562 11 Noyau en U avec joug
- 1 562 121 Agrafe d'assemblage avec pince à ressort
- 1 562 21 Bobine secteur à 500 spires
- 1 562 18 Bobine très basse tension, 50 spires
- 1 524 013 Sensor-CASSY 2
- 1 524 220 CASSY Lab 2
- 1 524 082 Capteur de rotation S
- 1 524 064 Capteur de pression S, ±2 000 hPa
- 1 309 48 Fil de pêche
- 1 352 08 Ressort à boudin 25 N/m
- 2 501 33 Câble d'expérimentation 32 A, 100 cm, noir
- 1 En complément : PC avec Windows XP/Vista/7/8/10 (x86 ou x64)
- 1 388 181 * Pompe submersible
- 1 521 231 * Transformateur variable TBT 3/6/9/12 V
- 2 667 194 * Tuyau silicone 7 mm Ø, 1 m
- 1 604 3131 * Bidon à col large 10 l
- 1 520 8105 * Expérience virtuelle : Diagramme pV du moteur à air chaud

Les articles marqués d'un * ne sont pas obligatoires, mais sont recommandés pour la réalisation de l'expérience.