

Date d'édition: 16.12.2025

Ref: P2.3.3.2

P2.3.3.2 Transformation de l'énergie mécanique en énergie thermique

LEYBOLD

Mesure avec CASSY

Dans l'expérience P2.3.3.1, on met en évidence léquivalence entre énergie mécanique et énergie thermique: à laide dune manivelle, on fait tourner différents récipients calorimétriques sur leurs axes, les faisant ainsi chauffer par frottement contre une corde en nylon.

La force de frottement correspond au poids G dune masse marquée suspendue.

Pour n tours du calorimètre, le travail mécanique

 $Wn = G \cdot n \cdot \tilde{d} \cdot d$

d : diamètre du calorimètre

est effectué.

Il entraîne une élévation de température du calorimètre correspondant à la quantité de chaleur

 $Qn = m \cdot c \cdot (n - 0)$

c : capacité thermique spécifique, m : masse,

n: température après n tours

Pour vérifier la relation

Qn = Wn

les deux grandeurs sont reportées dans un diagramme à des fins de comparaison. Au cours de l'expérience, on a recours au à l'interface CASSY.

Équipement comprenant :

1 388 00 Appareil de base pour déterminer l'équivalent mécanique de la chaleur

1 388 01 Calorimètre à eau

1 388 02 Calorimètre en cuivre

1 388 03 Calorimètre en aluminium

1 388 04 Calorimètre en aluminium, grand

1 388 24 Masse marquée, 5 kg

1 524 013 Sensor-CASSY 2

1 524 220 CASSY Lab 2

1 524 074 Timer S

1 524 0673 Connecteur adaptateur NiCr-Ni S, type K

1 529 676 Sonde de température NiCr-Ni, 1,5 mm, type K

1 337 46 Barrière lumineuse en U

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 16.12.2025

1 501 16 Câble de connexion, à 6 pôles, 1,50 m

1 300 02 Pied en V, petit

1 301 11 Noix avec pince

1 300 40 Tige 10 cm, 12 mm Ø

1 300 41 Tige 25 cm, 12 mm Ø

1 301 07 Pince de table simple

1 En complément : PC avec Windows XP/Vista/7/8/10 (x86 ou x64)

Catégories / Arborescence

Sciences > Physique > Expériences pour le supérieur > Chaleur > La chaleur comme forme d'énergie > Transformation de l'énergie mécanique en chaleur Formations > CPGE > Thermodynamique

Options

Ref: 38800

Appareil de base pour déterminer l'équivalent mécanique de la chaleur

Pour fournir une force de frottement précise aux calorimètres (38801 , 38802 , 38803 , 38804). Avec manivelle, compte-tours, cliquet anti-retour, pince de table et corde de frottement.

Caractéristiques techniques : Longueur de la corde : env. 2,15 m Écartement de la pince de table : 65 mm

Date d'édition: 16.12.2025

Ref: 38801

Calorimètre à eau pour 388 00

Pour étudier l'échauffement en fonction du travail de frottement ou de l'énergie électrique et déterminer la capacité thermique (massique).

Se fixe à l'appareil de base (38800) à l'aide de chevilles. Avec trou axial à presse-étoupe pour le passage d'un thermomètre.

Livré avec joint en caoutchouc et deux bagues métalliques.

Sans enroulement chauffant.

Caractéristiques techniques :

Diamètre: 47 mm Matériau: cuivre Forme: creux Hauteur: 47 mm Masse: 100 g

Ref: 38802

Calorimètre en cuivre pour 388 00

Pour étudier l'échauffement en fonction du travail de frottement ou de l'énergie électrique et déterminer la capacité thermique (massique).

Se fixe à l'appareil de base (38800) à l'aide de chevilles.

Avec trou axial à presse-étoupe pour le passage d'un thermomètre. Livré avec joint en caoutchouc et deux bagues métalliques.

Avec enroulement chauffant.

Caractéristiques techniques :

Diamètre: 47 mm

Chauffage Alimentation : max. 24 V, par douilles de 2 mm Résistance : env. 30O

Matériau : Cu Forme : plein Hauteur : 43 mm Masse : 660q

Date d'édition: 16.12.2025

Ref: 38803

Calorimètre en aluminium pour 38800

Pour étudier l'échauffement en fonction du travail de frottement ou de l'énergie électrique et déterminer la capacité thermique (massique).

Se fixe à l'appareil de base (38800) à l'aide de chevilles. Avec trou axial à presse-étoupe pour le passage d'un thermomètre.

Livré avec joint en caoutchouc et deux bagues métalliques.

Avec enroulement chauffant.

Caractéristiques techniques :

Diamètre: 47 mm

Chauffage Alimentation: max. 24 V, par douilles de 2 mm Résistance: env. 300

Matériau : Al Forme : plein Hauteur : 43 mm Masse : 220g

Ref: 38804

Grand calorimètre aluminium pour 388 00

Pour étudier l'échauffement en fonction du travail de frottement ou de l'énergie électrique et déterminer la capacité thermique (massique).

Se fixe à l'appareil de base (38800) à l'aide de chevilles. Avec trou axial à presse-étoupe pour le passage d'un thermomètre.

Livré avec joint en caoutchouc et deux bagues métalliques.

Avec enroulement chauffant.

Caractéristiques techniques :

Diamètre : 47 mm

Chauffage Alimentation : max. 24 V, par douilles de 2 mm Résistance : env. 30 O

Matériau : Al Forme : plein Hauteur : 86 mm Masse : 440 g

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 16.12.2025

Ref: 38824

Masse marquée de 5 kg avec crochet

Livrée avec crochet de suspension et barrette d'accrochage sous la base.

Caractéristiques techniques :

Masse:5 kg Dimensions:21 x 11 cm Ø Matériau: fonte

Ref: 524013

Sensor-CASSY 2, Interface PC USB Nécessite une licence du logiciel CASSY 2

C'est une interface connectable en cascade pour l'acquisition de données.

Pour le branchement au port USB d'un ordinateur, à un autre module CASSY ou au CASSY-Display (524 020USB) Sensor-CASSY(524 010), Sensor-CASSY 2 et Power-CASSY (524011USB) peuvent être connectés en cascade mixte

Isolée galvaniquement en trois points (entrées de 4 mm A et B, relais R)

Mesure possible simultanément aux entrées de 4 mm et slots pour adaptateurs de signaux (système à quatre

Avec la possibilité de monter en cascade jusqu'à 8 modules CASSY (pour multiplier les entrées et sorties)

Avec la possibilité d'avoir jusqu'à 8 entrées analogiques par Sensor-CASSY par l'intermédiaire des adaptateurs de signaux

Avec reconnaissance automatique (plug & play) des adaptateurs par CASSY Lab 2 (524 220)

Commandée par micro-ordinateur avec le système d'exploitation CASSY (facilement actualisable à tout instant via le logiciel pour l'optimisation des performances)

Utilisable au choix comme appareil de table à inclinaison variable ou comme appareil de démonstration (aussi dans le cadre d'expérimentation CPS/TPS)

Alimentée en tension 12 V CA/CC par une fiche femelle ou un module CASSY adjacent

Informations sur le développeur, LabVIEW et MATLAB; les pilotes sont disponibles sur Internet

Caractéristiques techniques :

5 entrées analogiques

2 entrées tension analogiques A et B sur douilles de sécurité de 4 mm (isolées galvaniquement) Résolution :

12bits

Gammes de mesure : ±0,1/±0,3/±1/±3/±10/±30/±100/±250V Erreur de mesure : ±1% plus 0,5% de la pleine échelle

Résistance d'entrée : 1MO

Taux d'échantillonnage : jusqu'à 1MHz par entrée

Nombre de valeurs : quasiment illimité (suivant le PC) jusqu'à 10 000valeurs/s, pour un taux de mesure plus

élevé max. 200 000 valeurs

Pré-trigger : jusqu'à 50 000valeurs par entrée

1 entrée courant analogique A sur douilles de sécurité de 4 mm (alternativement à l'entrée tension A)

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 16.12.2025

Gammes de mesure : $\pm 0.03/\pm 0.1/\pm 0.3/\pm 1/\pm 3A$

Erreur de mesure : erreur de mesure de la tension plus 1% Résistance d'entrée : < 0,50

Taux d'échantillonnage : jusqu'à 1MHz par entrée

Pour de plus amples informations, voir les entrées de tension

2 entrées analogiques sur slot pour adaptateurs de signaux A et B (raccordement possible de tous les capteurs et

adaptateurs CASSY)

Gammes de mesure : $\pm 0.003/\pm 0.01/\pm 0.03/\pm 0.1/\pm 0.3/\pm 1V$

Résistance d'entrée : 10kO

Taux d'échantillonnage : jusqu'à 500kHz par entrée Pour de plus amples informations, voir les entrées de tension.

Les caractéristiques techniques varient en fonction de l'adaptateur enfiché.

La reconnaissance des grandeurs et gammes de mesure est assurée automatiquement par CASSY Lab 2 dès qu'un adaptateur est enfiché.

4 entrées timer avec compteurs de 32 bits sur slot pour adaptateurs de signaux (par ex. pour l'adaptateur GM, l'adaptateur timer ou le timer S)

Fréquence de comptage : max. 1MHz Résolution temporelle : 20ns

5 affichages de l'état par LED pour les entrées analogiques et le port USB

Couleurs : rouge et vert, suivant l'état Clarté : ajustable

1 relais commutateur (indication de la commutation par LED) Gamme : max. 250 V / 2 A

1 sortie analogique (indication de la commutation par LED, par ex. pour un aimant de maintien ou une alimentation pour l'expérimentation)

Tension ajustable: max. 16V / 200mA (charge =80O)

12 entrées numériques (TTL) sur slots A et B pour adaptateurs de signaux (actuellement utilisées seulement pour la reconnaissance automatique de l'adaptateur)

6 sorties numériques (TTL) sur slots A et B pour adaptateurs de signaux (actuellement utilisées seulement pour la commutation automatique de la gamme de mesure d'un adaptateur)

1 port USB pour la connexion d'un ordinateur

1 bus CASSY pour la connexion d'autres modules CASSY

Dimensions: 115mm x 295mm x 45mm

Masse: 1,0kg

Matériel livré : Sensor-CASSY 2

Logiciel CASSY Lab 2 sans code d'activation avec aide exhaustive (peut être utilisé 16 fois gratuitement, ensuite, en version de démonstration)

Câble USB

Adaptateur secteur 230 V, 12 V/1,6 A

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 16.12.2025

Ref: 524220

CASSY Lab 2 Licence Département ou établissement

Mises à jour gratuites

Version perfectionnée du logiciel réussi CASSY Lab pour le relevé et l'exploitation des données avec une aide exhaustive intégrée et de nombreux exemples d'expériences préparés.

- Supporte jusqu'à 8 modules Sensor-CASSY 2, Sensor-CASSY et Power-CASSY à un port USB ou série
- Supporte des modules Pocket-CASSY, Mobile-CASSY ou Power Analyser CASSY à différents ports USB
- Supporte le joulemètre et wattmètre et les instruments de mesure universels de Physique, Chimie et Biologie
- Supporte tous les adaptateurs de signaux CASSY
- Supporte en supplément de nombreux appareils au port série (par ex. VidéoCom, détecteur de position à IR, balance)
- Facilité d'emploi grâce à la reconnaissance automatique des modules CASSY et des adaptateurs qu'il suffit de brancher pour pouvoir les utiliser (plug & play) : représentation graphique, activation des entrées et sorties par simple clic et paramétrage automatique spécifique à l'expérience considérée (en fonction de l'adaptateur de signaux enfiché)
- Affichage des données sur des instruments analogiques/numériques, dans des tableaux et/ou des diagrammes (avec la désignation des axes au choix)
- Relevé des valeurs manuel (par appui sur une touche) ou automatique (réglage possible de l'intervalle de temps, du temps de mesure, du déclenchement, d'une condition de mesure supplémentaire)
- Exploitations variées telles que par ex. diverses adaptations (droite, parabole, hyperbole, fonction exponentielle, adaptation arbitraire), intégrale, inscription d'annotations sur le diagramme, calculs quelconques de formules, dérivation, intégration, transformation de Fourier
- Format de données XML pour les fichiers d'expériences (importe aussi les fichiers d'expériences réalisés avec CASSY Lab 1)
- Exportation facile des données de mesure et des diagrammes par le biais du presse-papiers
- Plus de 150 exemples d'expériences dans le domaine de la physique, chimie et biologie, accompagnés d'une description détaillée
- Représentation graphique du CASSY, du boîtier du capteur et de l'affectation des broches lors du chargement d'un fichier de test
- Mises à jour et versions de démonstration gratuites disponibles sur Internet
- Matériel prérequis: Windows XP/Vista/7/8/10/11 (32+64 bits), port USB libre (appareils USB) ou port série libre (appareils série), support des processeurs multi-cores

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 16.12.2025

Ref : 524074 Timer S

Permet de raccorder deux barrières lumineuses 33746 / 337462 ou une roue à rayons 337462 + 337464

Permet de raccorder deux barrières lumineuses (33746 , 337468 , 3374681 ou une barrière lumineuse combinée avec une roue à rayons combinée (337462 avec 337464) à CASSY.

Caractéristiques techniques :

Résolution temporelle : 1 µs (en cas d'utilisation de barrières lumineuses)

Résolution en distance : 1 cm ou ±1 mm avec reconnaissance du sens de rotation (en cas d'utilisation de la roue à

rayons combinée)

Raccords: deux douilles à 6 contacts (pour 50116)

Dimensions: 50 mm x 25 mm x 60 mm

Masse: 0,1 kg

Ref: 5240673

Connecteur adaptateur NiCr-Ni S, type K

Gammes de mesure max. (suivant le capteur) : -200 ... +200°C / -200 ... +1200°C

Permet de raccorder deux thermocouples NiCr-Ni (type K) pour la mesure de la température et de la température différentielle avec CASSY (524013 , 524006 , 524005W , 524018) ou les instruments de mesure universels (531835 , 531836 , 531837).

Caractéristiques techniques :

Gammes de mesure max. (suivant le capteur) : -200 ... +200°C / -200 ... +1200°C

Résolution: 0,1 K/1 K

Gammes de mesure de la température différentielle : -20 ... +20°C / -200 ... +200°C

Résolution: 0,01 K/0,1 K

Connexion : prises plates, de type K Dimensions : 50 mm x 25 mm x 60 mm

Masse: 0,1 kg

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 16.12.2025

Ref: 529676

Sonde de température NiCr-Ni, 1,5 mm, type K

Thermocouple NiCr-Ni dans gaine en acier inoxydable, type K (fiche jaune selon la norme ANSI) avec prise plate normalisée pour une utilisation avec CASSY et le connecteur adaptateur NiCr-Ni S (524 0673) ou directement avec l'adaptateur chimie (524 067) et le Mobile CASSY 2 (524 005).

Caractéristiques techniques :

Sonde isolée électriquement de la gaine Gamme de mesure : -50 °C ... +1100 °C

Temps de réponse :0,9 s

Précision: ½ DIN CEI 584 classe 2 (±1,25 %)

Longueur de la sonde : 190 mm

Diamètre de la sonde : 1,5 mm, embout plat Longueur du câble de connexion : 2 m

Ref: 33746

Barrière lumineuse, IR

Barrière lumineuse de précision avec source à infrarouges pour la commande d'appareils de comptage et de mesure du temps pour l'expérimentation avec des corps en mouvement, par ex. pour l'étude du mouvement sur le rail, de la chute libre, des oscillations d'un pendule, de ressorts à lame ou de cordes.

Connexion à CASSY via l'adaptateur Timer (524034) ou au Timer S (524074).

Se fixe avec une noix ou un aimant de maintien. Fixation possible sur des profilés à section carrée.

Témoin de mise sous tension (LED).

Caractéristiques techniques : Précision de mesure: 0,1 mm

Fréquence de commutation: max. 5 kHz

Sortie du signal et alimentation en tension: par douille multiple

Ouverture de l'armature en U: 110 mm Profondeur de l'armature en U: 160 mm

Connexion: 9 ... 25 V CC ou 6 ... 15 V CA par douille multiple (pour 50116)

Consommation: 110 mA

Date d'édition : 16.12.2025

Ref: 50116

Câble connexion, 6 pôles, 1,5 m

Avec connecteurs hexapolaires aux deux extrémités / Courant: 1 A max par brin

Caractéristiques techniques : Courant : max. 1A par brin

Ref : 30002 Pied en V, 20cm

Pour des montages très stables même en cas de charge unilatérale.

Perçage à rainure longitudinale et vis à garret dans la barre transversale et au sommet.

Perçages filetés à l'extrémité des branches pour vis calantes servant à l'ajustage.

Fourni avec une paire de vis calantes et un embout en forme de rivet pour le perçage au sommet.

Caractéristiques techniques :

- En forme de V

- Ouverture pour les tiges et les tubes : 8 ... 14 mm

- Longueur des côtés : 20 cm

- Gamme d'ajustage par vis de calage : 17 mm

- Masse : env. 1,3 kg

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 16.12.2025

Ref : 30111 Noix avec pince

Pour la fixation de pièces cylindriques, par ex. des tubes et des ballons en verre. Mâchoires avec revêtement en liège.

Caractéristiques techniques :

- Ouverture de la pince : 20 à 80 mm

Longueur totale : 16 cmOuverture de la noix : 14 mm

Ref: 30040

Tige 10 cm,12 mm de diamètre, En acier inox massif, résistant à la corrosion

En acier inox massif, résistant à la corrosion.

Caractéristiques techniques :

Diamètre : 12 mm Longueur : 10 cm

Date d'édition : 16.12.2025

Ref: 30041

Tige 25 cm, 12 mm de diamètre

En acier inox massif, résistant à la corrosion.

Caractéristiques techniques :

Diamètre : 12 cmLongueur : 25 mm

Ref: 30107 Pince de table simple

à fixer sur un bord de table pour le montage vertical de tiges et de plaques. Fixation avec deux vis de serrage.

Caractéristiques techniques :

- Ouverture pour les tiges : 14 mm

- Ouverture pour le bord de table : 60 mm

Produits alternatifs

Date d'édition : 16.12.2025

Ref: P2.3.3.1

P2.3.3.1 Transformation de l'énergie mécanique en énergie thermique

tracé et évaluation manuels des valeurs mesurées

Dans l'expérience P2.3.3.1, on met en évidence léquivalence entre énergie mécanique et énergie thermique: à laide dune manivelle, on fait tourner différents récipients calorimétriques sur leurs axes, les faisant ainsi chauffer par frottement contre une corde en nylon.

La force de frottement correspond au poids G dune masse marquée suspendue.

Pour n tours du calorimètre, le travail mécanique

 $Wn = G \cdot n \cdot \tilde{d} \cdot d$

d : diamètre du calorimètre

est effectué.

Il entraîne une élévation de température du calorimètre correspondant à la quantité de chaleur

 $Qn = m \cdot c \cdot (n - 0)$

c : capacité thermique spécifique, m : masse,

n: température après n tours

Pour vérifier la relation

Qn = Wn

les deux grandeurs sont reportées dans un diagramme à des fins de comparaison. Le tracé et lexploitation sont effectués manuellement.

Équipement comprenant :

- 1 388 00 Appareil de base pour déterminer l'équivalent mécanique de la chaleur
- 1 388 01 Calorimètre à eau
- 1 388 02 Calorimètre en cuivre
- 1 388 03 Calorimètre en aluminium
- 1 388 04 Calorimètre en aluminium, grand
- 1 388 051 Thermomètre pour calorimètre, +15...35 °C/0,2 K
- 1 388 24 Masse marquée, 5 kg