

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 19.12.2025

Ref: E6.3.1.4

E6.3.1.4 Régulation de luminosité

Système modulaire sur plaque

Système

Les expériences sont mises en place avec des plaques expérimentales dans le cadre de profil.

Le Profi-CASSY est utilisé pourcommander le système régulé ou la boucle de régulation et enregistrer les valeurs de mesures pertinentes.

Objectifs pédagogiques

- Reconnaissance des principes de contrôle de base
- Guidage et contrôle des défauts
- Logiciel d'évaluation et de simulation de manipulation

Fonction

Le système de régulation de lumière contient des sources lumineuses pour la lumière utile et perturbatrice, ainsi qu'un capteur photoélectrique.

Les sources lumineuses à LED sont activées directement par le régulateur.

Un actionneur externe (amplificateur de puissance) n'est pas nécessaire.

L'éclairage de la pièce agit comme une variable de perturbation externe sur le système régulé à travers l'écran mat.

En raison des fréquences de coupure relativement élevées du semi-conducteur optique, le système commandé par la lumière a une réponse temporelle comme celle d'un système PT1 rapide.

L'ordre du système résultant est n = 1, il n'y a gu'une seule énergie significative emmagazinée.

La régulation de la lumière est demandée dans les pièces critiques pour la sécurité, par ex. dans les arènes sportives ou aux hôpitaux.

Comme exemple biologique serait la capacité de l'il à s'adapter à différents niveaux de luminosité (pupille).

Méthode

Les équipements conviennent à la démonstration ainsi qu'aux expériences pour étudiants.

Les expériences sont réalisées avec un manuel électronique et les fichiers de mesures pour CASSY Lab 2 et

Où Insertion & Lecture : Les expériences démarrent automatiquement après l'appel du fichier de mesure.

Groupes cibles

Les groupes cibles comprennent les étudiants qui suivent une formation professionnelle en génie électrique et les étudiants ingénieurs en automatisation et mécatronique.

Le cours propose des expériences d'introduction qui sont très simples et aborde aussi des sujets difficiles de niveau licence.

Thèmes

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 19.12.2025

- Caractéristique du système de régulation de température
- Enregistrement de la réponse à un échelon
- Grandeur optimale, compensation de boucle de régulation
- Techniques de régualtion
- Régulation de limite
- Dimensionnement empirique des régulateurs
- Conception de régulateur avec des constantes de temps connues pour le système régulé
- Conception du régulateur par compensation de pôle zéro, détermination KR en exécution batch
- Conception du régulateur par optimisation numérique
- Méthode de Ziegler-Nichols
- Contrôle de consigne et de la perturbation avec un régulateur électronique
- Régulation de température avec software de régulation
- Régulation de la température avec simulation orientée objet
- Régulation de température avec régulateur à deux positions, influence de l'hystérésis
- Régulation à deux points avec rétroaction retardée
- Régulation à deux positions avec rétroaction retardée
- Régulation de température avec régulateur à trois positions
- Modélisation de la boucle de régulation "

Figure similaire

Équipement comprenant :

1 734 02 Ajusteur de la valeur de consigne

1 734 064N Régulateur PID numérique Net

1 734 311 Syst

Catégories / Arborescence

Formations > CPGE > Regulation - Asservissement

Techniques > Régulation > Bases de la régulation > Régulation de température / éclairement

Options

Ref: 50059

Jeu de 10 cavaliers de sécurité 19 mm, noirs

Pour une utilisation dans les circuits basse tension.

Caractéristiques techniques :

Fiches : fiches de sécurité de 4 mm Ø

Écart entre les fiches : 19 mm

Courant: 25 A max.

Date d'édition : 19.12.2025

Ref: 500592

Jeu de 10 cavaliers de sécurité 4mm avec reprises arrières

Caractéristiques techniques : - Écart entre les fiches : 19 mm

- 2 prises

- Couleur : noir

- Charge admissible: 32 A

Ref: 500641

Câble d'expérimentation de sécurité, 100 cm, rouge

Section du conducteur : 2,5mm² souple, Courant permanent : max. 32A

À utiliser dans des circuits basse tension, souple; avec une fiche de sécurité et une prise de sécurité axiale aux deux extrémités. Rouge.

Caractéristiques techniques : - Section du conducteur : 2,5mm²

- Courant permanent : max. 32A

- Longueur: 100cm

Date d'édition : 19.12.2025

Ref: 500642

Câble d'expérimentation de sécurité, 100 cm, bleu

Section du conducteur : 2,5mm² souple, Courant permanent : max. 32A

À utiliser dans des circuits basse tension, souple; avec une fiche de sécurité et une prise de sécurité axiale aux deux extrémités.

Bleu.

Caractéristiques techniques :
- Section du conducteur : 2,5mm²
- Courant permanent : max. 32A

- Longueur : 100cm

Ref: 500644

Câble d'expérimentation de sécurité, 100 cm, noir

Pour utilisation dans des circuits basse tension ; flexible ; fiche de sécurité avec douille de sécurité axiale aux deux extrémités.

Noir.

Caractéristiques techniques: Section du conducteur : 2,5 mm² Intensité nominale : max. 32 A

Date d'édition: 19.12.2025

Ref: 524016S2

Profi-CASSY-Starter USB: Contient une interface Profi-CASSY + Logiciel CASSY Lab 2

Pour les sciences et techniques industrielles (régulation, automatisme..)

Le Profi-CASSY-Starter 2 est un package d'expérimentation complet constitué de

- l'interface Profi-CASSY (524016)
- et du logiciel CASSY Lab 2 (524 220).

Le Profi-Cassy est une interface intelligente pour tous les applications électrotechniques: Connexion entre micro-ordinateur et API ou COM3LAB, technique numérique et MFA CBS 9 Simulateur de processus pour API etCOM3LAB

Interface PC intelligente de mesure et commande pour les sciences et techniques industrielles

Caractéristiques techniques 16 entrées numériques I0 à I15 (logique 5 V ou 24 V)

Taux de balayage: max. 100 valeurs/s

16 sorties numériques Q0 à Q15

(logique 5 V ou 24 V):

Courant de sortie: 10 mA pour une alimentation interne de 5 V, 500 mA via une alimentation électrique externe jusqu'à 30V - Courant total: 2 A

Les entrées et sorties numériques sont respectivement pourvues de deux connecteurs à 10 voies pour la connexion directe au système automatisé; huit entrées et huit sorties sont équipées de douilles de 2 mm et de LEDs d'état.

2 entrées de tension analogiques A et B Disponibles sur douilles de sécurité de 4 mm

Résolution: 12 bits

Gammes de mesure : ±10 V

Précision : ± 1%, plus 0,5 % de la valeur finale de la gamme

Résistance d'entrée : 1 MW

Taux de balayage: max. 10 000 valeurs/s

2 sorties analogiques X et Y

Disponibles sur douilles de sécurité de 4 mm

Gamme de modulation : ±10 V

Courant de sortie : max. 100 mA par sortie

Résolution : 12 bits, précision : ± 1%, plus 0,5 % de la valeur finale de la gamme

Taux de balayage: max. 10 000 valeurs/s

1 raccord PROFIBUS

Avec connecteur femelle Sub-D à 9 voies Constituant passif (esclave) sur le bus de terrain PROFIBUS DP Adresse réglable via le logiciel de configuration Avec 16 entrées et sorties numériques Taux de transmission jusqu'à 6 Mbits/s

Port USB

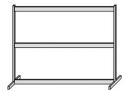
Date d'édition: 19.12.2025

pour la connexion à un ordinateur

1 bus CASSY

pour la connexion à d'autres CASSY (Sensor-Cassy ou de Power-CASSY)

Dimensions (IxHxP): 115 mm x 295 mm x 45 mm


Matériel livré :

- 1 Profi-CASSY
- 1 logiciel CASSY Lab 2 avec code d'activation pour Windows XP/Vista/7/8 (32+64 bits) ainsi qu'une aide exhaustive
- 1 guide pour l'installation
- 1 câble USB
- 1 adaptateur secteur 230 V / 12 V / 1,6 A
- 1 fichier GSD pour le paramétrage facile

Ref: 72609

Cadre profilé T130, 2 étages

Largeur x Hauteur x Profondeur = 1242 x 730 x 300 mm

Caractéristiques techniques :

- Hauteur : 73 cm - Largeur : 124 cm - Profondeur : 30 cm

Ref: 72686

Alimentation stabilisée ± 15 V/3 A pour cadre d'expériences

Alimentation électrique de laboratoire à deux tensions fixes distinctes et stabilisées pour les montages verticaux avec le système d'éléments enfichables dans un cadre profilé ou le cadre d'expérimentation et de démonstration ; résiste aux courts-circuits.

Contrôle de la tension nominale par deux LED vertes.

Caractéristiques techniques :

Tension de sortie : ± 15 V par douilles de 4 mm Charge admissible : 2,4 A ; temporairement 3 A

Alimentation en tension: 230 V, 50/60 Hz

Date d'édition: 19.12.2025

Fusible: T 1,0

Puissance absorbée : 160 VA Dimensions : 100 x 297 x 120 mm

Masse: 5 kg

Ref: 73402

Potentiomètre de consigne 0....10 V ou -10...+10V

Fournit une valeur de consigne.

Graduation linéaire du potentiomètre de la valeur de consigne.

Caractéristiques techniques :

Sortie: 0 ... + 10 V peut être connecté à -10 ... + 10 V au moyen d'un cavalier.

Sortie au moyen d'un interrupteur à bascule commutable sur une tension de référence externe U Ref ou au moyen

d'un cavalier sur 0 V.

Tension d'alimentation: ± 15 V DC

Ref: 734064N

Régulateur PID numérique

Réseau de contrôle numérique à 32 bits pour l'intégration dans le réseau de LeyLab.

Grâce au microprocesseur ARM interne, une fréquence d'échantillonnage élevée et une réponse de régulation rapide sont obtenues.

Pour la régulation des processus continus, le régulateur numérique peut être configuré en régulateur P, PI, PD ou PID.

Il est menu d'un n?ud additionneur d'entrée pour deux grandeurs de consigne et une grandeur à régler, un point de mesure pour l'écart, un affichage de cet écart par 3 LED, actions P, I et D déconnectables séparément. L'action I peut être réinitialisée par une entrée séparée (RESET).

Avec un n?ud sommateur de sortie pour l'addition ou la soustraction de deux grandeurs perturbatrices externes et d'une grandeur perturbatrice interne, cette dernière pouvant être activée par le réseau.

Sélection des paramètres avec bouton poussoir et bouton incrémental(à levier).

Visualisation des paramètres actuels sur trois afficheurs 4 chiffres à 7 segments. Indicateur de saturation à LED tricolore.

Date d'édition: 19.12.2025

Il est équipé d'une prise RJ 45 permettant une connexion à un réseau LAN et peut être piloté par le logiciel LEYLAB.control 725 006 ou LEYLAB.control Lite 725 007 qui offre la possibilité de consulter ou de modifier des paramètres et d'activer des grandeurs perturbatrices.

Le régulateur est utilisable dans le système protégé par certificat d'utilité « Espaces d'apprentissage interconnectés ».

Caractéristiques techniques :

- Tension d'alimentation: ± 15 V DC
- Plage de tension du signal: 10 V ... + 10 V
- Intervalle d'échantillonnage: 50 µs
- Coefficient proportionnel K P: 0.01 ... 100 - Temps de poursuite T i: 10 ms 1000 s
- Dérivée T d : 1 ms ... 100 s

Ref : 734311 Système de régulation de luminosité

Servant à l'étude d'un système technique rapide. Emetteur de lumière en modulation MLI et phototransistor comme récepteur de lumière. Analyse des perturbations d'une source de lumière auxiliare à contrôle interne et externe. Autre possibilité de perturbation: lumière ambiante venant d'une fenêtre.

Caractéristiques techniques :

Plage de tension du signal: 0...10 V Tension d'alimentation: ± 15 V CC Puissance absorbée: max. 10 W

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 19.12.2025

Ref: 734501

WINFACT LD Starter (version mono poste)

Limité à 100 blocs fonctionel, nécessite l'interface Profi-CASSY

WinFACT is an easy to use, modular program system. It provides tools for analysis, synthesis and simulation of conventional control systems.

On the other hand it provides components for the treatment of fuzzy systems and neural networks.

The graphical user interface under Windows guarantees an extremely low training effort and at the same time a high ease of use.

Thus WinFACT in the LD DIDACTIC Edition is particularly suitable for educatonal purposes.

WinFACT offers a variety of program interfaces and data formats and enables communication with a wide range of peripheral devices, external processes and user's own software products and third-party software.

The LD DIDACTIC Edition exclusively offers additionally the easy connection to the measuring systems "Sensor CASSY" and "Profi CASSY" for integration into experiments in measurement engineering, communication engineering, control engineering and automation technology.

The core of the program system WinFACT is the block-oriented simulation system BORIS.

In different configurations of the LD DIDACTIC the CASSY system is used to be applied as PID controller, as fuzzy controller, as (fuzzy) adapted or also as universal line simulator without the need for additional software like compilers, monitor programs or similar.

Likewise, complex SCADA systems can be easily set up with WinFACT and tested and extended step by step.

For many LD DIDACTIC experiments in control engineering, WinFACT offers support in all phases of controller design, starting with modeling, analysis of the controlled system, controller design and closed loop simulation.

WinFACT consists of a compilation of individual, in principle independent and arbitrarily combinable program modules, between which data can be transferred very easily via different communication channels.

Technical Data:

The program system contains all necessary components for analysis and synthesis of conventional control loops. These include:

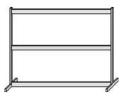
- Identification of linear systems on the basis of measured progressions of the input and output variables
- Analysis of linear transmission systems by calculation of step response, Bode diagram, locus curve, root locus curve and pole-zero distribution
- The synthesis of linear controllers with all common standard control elements
- Design, simulation and optimization of conventional control loops

from the simulation, e.g. realization parameter variable structures

- Design, simulation and optimization of FUZZY control loops
- Design, simulation and optimization of hybrid control loops
- Limited number of usable blocks in this license: 100 blocks- Modification of parameters. Via the block types PARMOD and PARVAL BORIS allows the control of block parameters
- Batch mode. BORIS allows an automatic execution of complete simulation series (e.g. parameter studies) without user intervention
- OPC. With the optional OPC client/server toolbox BORIS can be made OPC capable in a simple and comfortable way.
- Operating and monitoring. BORIS has a number of operating and visualization elements.
- Numerical optimization of parameters from User-DLL-blocks
- Graphical display of the connection nodes Extended User-DLL interface
- Extended text and frame functionality
- Integrated revision control system
- Quick color selection via color toolbar
- User definable system block pallets
- Monitoring of blocks (watch window)
- Global adjustment of the sampling time of time-discrete blocks
- Wide range of PID setting rules
- Extended measurement functions in all modules
- Operating point setting for identification

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 19.12.2025


Ref: 775683FR

Manuel E6.3.1.4 Régulation de l'intensité lumineuse

Instructions détaillées des expériences sur la régulation de l'intensité lumineuse, y compris les résultats des experiences pour l'enseignant et CASSY Lab 2 mesures et fichiers WinFact. DIN A4, 43 pages, en français

Ref: 72610

Cadre profilé T150, 2 étages

À deux étages Pied en T Sans canal

Caractéristiques techniques :

- Hauteur : 73 cm - Largeur : 145 cm - Profondeur : 30 cm

Ref: 734502

WINFACT LD Starter (licence multipostes - Etablissement)

Limité à 100 blocs fonctionel

Description

WinFACT is an easy to use, modular program system. It provides tools for analysis, synthesis and simulation of conventional control systems.

On the other hand it provides components for the treatment of fuzzy systems and neural networks.

The graphical user interface under Windows guarantees an extremely low training effort and at the same time a high ease of use.

Thus WinFACT in the LD DIDACTIC Edition is particularly suitable for educatonal purposes.

WinFACT offers a variety of program interfaces and data formats and enables communication with a wide range of peripheral devices, external processes and user's own software products and third-party software.

he LD DIDACTIC Edition exclusively offers additionally the easy connection to the measuring systems "Sensor CASSY" and "Profi CASSY" for integration into experiments in measurement engineering, communication engineering, control engineering and automation technology.

The core of the program system WinFACT is the block-oriented simulation system BORIS. In different configurations of the LD DIDACTIC the CASSY system is used to be applied as PID controller, as fuzzy controller, as (fuzzy) adapted or also as universal line simulator without the need for additional software like compilers, monitor programs or similar.

Likewise, complex SCADA systems can be easily set up with WinFACT and tested and extended step by step.

For many LD DIDACTIC experiments in control engineering, WinFACT offers support in all phases of controller design, starting with modeling, analysis of the controlled system, controller design and closed loop simulation.

WinFACT consists of a compilation of individual, in principle independent and arbitrarily combinable program modules, between which data can be transferred very easily via different communication channels.

Program can only be used on computers with Windows 7/8/10.

SYSTEMES DIDACTIQUES s.a.r.l.

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 19.12.2025

Technical Data

The program system contains all necessary components for analysis and synthesis of conventional control loops. These include:

- Identification of linear systems on the basis of measured progressions of the input and output variables
- Analysis of linear transmission systems by calculation of step response, Bode diagram, locus curve, root locus curve and pole-zero distribution
- The synthesis of linear controllers with all common standard control elements
- Design, simulation and optimization of conventional control loops
- Design, simulation and optimization of FUZZY control loops
- Design, simulation and optimization of hybrid control loops
- Limited number of usable blocks in this license: 100 blocks
- Modification of parameters. Via the block types PARMOD and PARVAL BORIS allows the control of block parameters from the simulation, e.g. realization parameter variable structures
- Batch mode. BORIS allows an automatic execution of complete simulation series (e.g. parameter studies) without user intervention
- OPC. With the optional OPC client/server toolbox BORIS can be made OPC capable in a simple and comfortable way.
- Operating and monitoring. BORIS has a number of operating and visualization elements.
- Numerical optimization of parameters from User-DLL-blocks
- Graphical display of the connection nodes Extended User-DLL interface
- Extended text and frame functionality
- Integrated revision control system
- Quick color selection via color toolbar
- User definable system block pallets
- Monitoring of blocks (watch window)
- Global adjustment of the sampling time of time-discrete blocks
- Wide range of PID setting rules
- Extended measurement functions in all modules
- Operating point setting for identification.

roduct code for activation with LEYLAB and download.

Note: A data carrier (DVD/USB stick) is not supplied. Should this be necessary, please contact your LD DIDACTIC contact person or our customer service.