

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 27.11.2025

Ref: E2.5.4.7

E2.5.4.7 Déterminer les données mécaniques d'une machine

Les données mécaniques d'une machine sont les pertes mécaniques et le moment d'inertie.

Les pertes mécaniques peuvent être déterminées lors d'une mesure statique, c'est-à-dire à vitesse constante. Lors de cette mesure, le moment d'inertie n'est pas effectif.

Les pertes mécaniques se composent du frottement des roulements et de l'énergie nécessaire au refroidissement.

Lors d'une mesure dynamique avec une accélération constante, le moment d'inertie est également efficace en plus des forces mécaniques dues au frottement et au refroidissement. Le moment d'inertie peut alors être déterminé.

Objectifs d'apprentissage

- pertes mécaniques
- pertes de ventilation
- Moment d'inertie

L'apprenant apprendra les bases des pertes mécaniques et du moment d'inertie avec une machine asynchrone. Plusieurs expériences permettront d'étudier ces propriétés.

Un autre groupe d'expériences avec le comportement de différentes machines de travail.

Pour l'évaluation, des diagrammes de caractéristiques seront enregistrés et évalués.

Points forts:

- Les mesures sont effectuées avec le test de machines CASSY.
- Toutes les mesures peuvent être effectuées avec ou sans ordinateur.

Toutes les fonctions du Test Machine CASSY 0,3 peuvent être utilisées rapidement directement via l'écran, la molette et les touches situées sur l'appareil.

Tous les réglages et résultats de mesure peuvent être enregistrés sur l'appareil et être rapidement rappelés ultérieurement ou simplement téléchargés.

De plus, le test de machines CASSY 0,3 peut être entièrement contrôlé en temps réel via les interfaces RJ45 Ethernet, W-LAN et USB-C.

Ces interfaces peuvent être utilisées par les logiciels suivants :

- CASSY Lab 2 pour les entraînements et les systèmes énergétiques,
- MATLAB® et LabVIEW ?
- Lab Docs Editor Advanced

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 27.11.2025

Pour la connexion média locale d'au moins quatre terminaux simultanément, les serveurs intégrés suivants sont disponibles dans le test de machines CASSY 0,3.

Pour plus de détails, veuillez consulter les données produit 7731900 ou 7731901 Test de machines CASSY 0,3.

L'équipement convient aussi bien pour les expériences d'élèves et d'étudiants en laboratoire avec une basse tension (courant continu, courant alternatif et courant triphasé) et - si le banc d'essai est mobile - pour les démonstrations d'enseignants dans la salle de classe ou l'amphithéâtre. Les expériences sont réalisées conformément au manuel.

Le groupe cible est constitué d'apprentis de l'industrie et d'étudiants en construction de machines électriques. Le cours propose des expériences de niveau moyen pour l'école professionnelle et permet en même temps d'acquérir les connaissances nécessaires sur le comportement des machines pour une interprétation scientifique dans la formation de bachelier.

Grâce à la connexion média, les expériences sont adaptées à la démonstration en classe ou dans un amphithéâtre.

Thèmes

- couple de perte d'une machine
- courbe caractéristique de couple statique
- caractéristique dynamique du couple
- moment d'inertie de la structure
- moment d'inertie de la machine

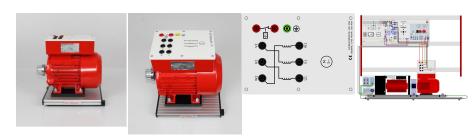
Équipement comprenant :

- 1 773 2104 Moteur à cage décureuil 230/400 0,3
- 1 773 1901 Test de machines CASSY 0,3
- 1 524 222 CASSY Lab 2 pour machines électriques et électronique de puissance
- 1 773 1991 Dynamomètre électrique 0,3
- 1 773 108 Accouplement et couvercle de bout d'arbre 0.3 transparent
- 1 315

Catégories / Arborescence

Techniques > Génie Electrique > E2.5 Commande des machines > E2.5.4 Démarrage moteur asynchrone en charge

Equipement pour l'enseignement expérimental, scientifique et technique


Date d'édition : 27.11.2025

Options

Ref: 7732104

Moteur asynchrone à cage 230/400 0.3 kW

La machine avec une extrémité d'arbre est isolée et construite sur une base en aluminium avec des patins. La machine doit être utilisée sur le banc de la machine.

Toutes les connexions sont mises en évidence sur la boîte de dérivation séparée par des fiches de sécurité de 4 mm.

Les valeurs nominales sont montées sur trois plaques signalétiques sur le boîtier de raccordement.

La machine est protégée par un interrupteur intégré de température d'enroulement de stator contre la surcharge.

En plus de la connexion de conducteur de protection pour la ligne de compensation de potentiel via M6 sur le boîtier de connexion est également fourni.

Caractéristiques techniques : Classe de puissance : 0,3 Puissance : 0,25 kW Tension : 400/230 V Y/d Courant : 0.76 /1.32 A

Courant: 0,76 /1,32 A Fréquence: 50 Hz

Facteur de puissance : 0,79

Modèle : tétrapolaire

Vitesse de rotation : 1350 tr/min

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 27.11.2025

Ref: 7731901

Module de commande et de mesure pour charge active tests des machines électriques CASSY 0,3

Mesure: vitesse, couple, 4 tensions, 4 courants, affichage sur écran graphique, pour machine 7731991

Le test de machines CASSY fait partie du système de test de machines destiné à lanalyse des entraînements électriques et à la simulation des charges des machines. De forme compacte, cet appareil peut être utilisé dans le cadre dexpérimentations ou comme appareil de table.

Le test de machines CASSY se distingue de son prédécesseur par une connexion LAN supplémentaire.

Outre lunité de commande pour le dynamomètre électrique (7731991), il possède un système de mesure et danalyse performant doté de quatre canaux de mesure isolés et sans potentiel permettant de réaliser la mesure simultanée du courant et de la tension, comme avec le Power Analyser CASSY (727101).

La mesure de la vitesse de rotation est réalisée par le biais dun capteur optique et permet une résolution angulaire de 0.1°.

Le couple est mesuré jusquà ±10 Nm avec une résolution de 1x10-3 Nm, et peut également être étalonné avec un poids de référence de 1 kg.

Le test de machines CASSY peut être utilisé notamment pour les essais suivants :

analyse de machines comme moteur et comme générateur,

comportement aux différents cas de charge, p. ex. masse dinertie, ventilateur, etc.,

comportement des cas de charge variables au fil du temps,

essai de convertisseur de fréquence avec machine asynchrone, machines IMP,

démarrage avec circuit en étoile et en triangle, softstarter et convertisseur de fréquence,

paramétrage dappareils de commande pour démarrage en douceur ou démarrage difficile avec moteur à baques. Le test de machines CASSY se distingue de son prédécesseur par une connexion LAN supplémentaire.

Choix de la machine :

Toutes les machines disponibles peuvent être paramétrées de manière extensive.

Une navigation par menu intelligente permet de réaliser ce paramétrage.

Ce choix est facilité par la reconnaissance intégrée des types de machines de nouvelles constructions.

Il est également possible dintégrer des machines issues du stock existant et de les paramétrer individuellement. Une commutation de la boucle de sécurité entre les machines LD et des machines de la marque « ELWE Technik » par exemple seffectue facilement.

Le menu « Paramétrage libre » permet également la saisie manuelle des paramètres danciennes machines, de sociétés tiers ou de machines spéciales, p. ex. à des fins de recherche. Nos conseillers techniques sont à votre disposition, nhésitez pas les contacter

Modes dexploitation:

Contrôle de moteurs

La régulation lors du contrôle de moteurs intervient, au choix, par le biais de la vitesse de rotation mesurée ou à laide du couple mesuré.

Régulation de la vitesse de rotation : manuelle, automatique, courbe daccélération, courbe de charge Régulation du couple : manuelle, à décharge automatique dynamique, à charge automatique dynamique, automatique statique selon IEC DIN VDE 60034-2-1 sur 6 niveaux et sur 16 niveaux supplémentaires de 0 % à 150

Contrôle de générateurs

Les machines électriques peuvent être contrôlées, surveillées et analysées par le système en tant que générateur en exploitation en ilot - mais aussi en exploitation en réseau.

SYSTEMES DIDACTIQUES s.a.r.l.

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 27.11.2025

Simulation de charge

En fonction de la vitesse de rotation pour essais de démarrage et comportements dexploitation

Courbe de charge : T(n) (extrudeur)

Courbe de charge : T(n²) (turbomachines, p. ex. ventilateurs)

Courbe de charge : TL = const. (ascenseur, grue)

Courbe de charge : P const. (arbre de tour, de fraiseuse)

Courbe de charge : T(á) masse dinertie

Courbe libre : Prescrites par le biais de logiciels externes, p. ex. : CASSY Lab 2 pour les entraînements et les

systèmes énergétiques (524 222), LabView ou MATLAB

Comportement en charge dépendant du temps

Fonction sinusoïdale Fonction trapézoïdale Fonction triangulaire :

Fonctions libres, prescrites par le biais de logiciels externes, p. ex. : CASSY Lab 2 pour les entraînements et les

systèmes

Ref: 524222

CASSY Lab 2 Machines électriques et électronique de puissance, licence multipostes Etablissement

Mises à jour gratuites

Licence du logiciel CASSY Lab pour l'enregistrement et l'analyse des données de mesure pour les entraînements et les systèmes d'énergie, avec une aide intégrée détaillée.

Y compris le serveur de valeurs de mesure pour la distribution des valeurs de mesure en direct, du tableau et du diagramme ainsi que des fichiers de mesure vers des tablettes ou des smartphones.

Licence établissement pour une utilisation sur un nombre quelconque de PC d'une école ou d'un institut.

Prend en charge Power Analyser CASSY (727 100/727 110) et Machine Test CASSY (773 1900).

Licence extensible par CASSY Lab 2 (524 220)

Affichage des données de mesure dans des instruments analogiques/numériques, des tableaux et/ou des diagrammes (également en simultané, libre choix de l'affectation des axes)

Enregistrement des valeurs de mesure manuel (pression d'une touche) ou automatique (intervalle de temps, durée de mesure, avance, déclencheur, condition de mesure supplémentaire réglables)

Evaluations puissantes, comme par ex. différentes adaptations (droite, parabole, hyperbole, fonction exponentielle, adaptation libre), intégrales, inscription de diagrammes, calculs de formules au choix, différentiation, intégration, transformation de Fourier

Connexion au serveur de mesures intégré dans le réseau local par code QR

Exportation des données de mesure et des diagrammes possible facilement via le presse-papiers

Mises à jour gratuites et versions de démonstration DISPONIBLES SUR INTERNET

Configuration requise pour le système : Windows XP/Vista/7/8/10 (32+64 bit), alternativement Linux ou MacOS X (jusqu'à la version 10.14) avec Wine, port USB libre, réseau local (pour le serveur de valeurs de mesure), les processeurs multicurs sont supportés

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 27.11.2025

Ref: 7731991

Machine Balance pour système de charge active 4Q pour module de commande et mesure 7731900 0.3kw

Machine asynchrone 0.6 kw avec codeur, Nécessite plaque de base en aluminium en 90 ou 120 cm

Le dynamomètre électrique est le système de base du système de test de machines pour lenregistrement de la courbe des machines électriques de la catégorie 0,3•kW dans les quatre quadrants de fonctionnement.

Ce système permet des essais selon la norme DIN/ISO 60034-2-1 «•Méthodes normalisées pour la détermination des pertes et du rendement à partir dessais (à l'exclusion des machines pour véhicules de traction), qui sont nécessaires pour les classes de rendement IE1 à IE4.

Ce dynamomètre électrique est une machine à servocommande AC montée en palier oscillant (machine pendulaire), utilisée en tant que système dentraînement ou de freinage.

Les interfaces du système ont été développées pour être utilisées avec la machine d'essai CASSY (773 1900).

Lensemble des machines de la gamme de machines LEYBOLD 0,3 sur socle en acier peuvent être utilisées comme échantillons.

En alternative, les machines existantes peuvent également être adaptées à ce système avec le kit de montage (773181/773182).

Nhésitez pas à contacter nos conseillers techniques.

Caractéristiques techniques:

Vitesse de rotation réglable et mesurable dans la plagee: jusquà ± 5000 min-1

Couple réglable et mesurable:

Plage de mesure jusquà ± 9,9 Nm

Cellule de charge derrière un couvercle transparent

Étalonnage à réglage manuel env. ± 0,3 Nm

Démonstration simple du principe de mesure avec barre ronde et poids (31539)

Dispositifs de sécurité

Surveillance intégrée de la température du dynamomètre

Interface pour la boucle de sécurité électrique intégrée avec contacts à ressorts de 6•mm

Composants de confort

Insonorisation grâce au concept banc et socle optimisé avec rails en plastique Remplacement rapide de léchantillon grâce au système de serrage rapide sûr.

Contenu de la livraison•:

Barre ronde•
Jeu de fiches de boucle de sécurité
Câble DSUB 25 pôles

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 27.11.2025

Ref: 773108

Chape d'accouplement et de bout d'arbre transparente pour machines électriques sur support en alu

Ref: 31539

Masse avec crochet, 1 kg

Livrée avec crochet de suspension et barrette d'accrochage sous la base.

Caractéristiques techniques :

Masse: 1 kg

Dimensions: 13,5 cm x 6,5 cm Ø

Matériau : fonte

Ref: 773110

Plaque de base en aluminium 90 cm pour banc machines électriques

Le banc de base de la machine a été spécialement développé avec le système de socle pour la formation. Liaison mécanique sûre, pour l'absorption de forces de torsion élevées.

Verrouillage mécanique de tous les composants sur le banc de base de la machine, ce qui empêche de retirer facilement des composants (p. ex. couvercles d'arbre) pendant le fonctionnement.

Pour les applications avec des composants machine supplémentaires tels que réducteur, compte-tours et capteur de position, il convient de choisir un banc adapté, par exemple 773115 Banc de base machine 120 cm ou 773120 Banc de base machine 140 cm.

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 27.11.2025

Ref: 773115

Plaque de base en aluminium 120 cm pour banc machines électriques

Le banc de base de la machine a été spécialement développé avec le système de socle pour la formation. Liaison mécanique sûre, pour l'absorption de forces de torsion élevées.

Verrouillage mécanique de tous les composants sur le banc de base de la machine, ce qui empêche de retirer facilement des composants (p. ex. des couvercles d'arbre) pendant le fonctionnement.

Pour les applications avec des composants machine supplémentaires tels que réducteur, tachymètre et capteur de position, il convient de choisir un banc adapté, par exemple 773120 Banc de base machine 140 cm.

Ref : 73106 Manchon pour l'accouplement mécanique de deux machines électriques de la gamme 0,1 ou 0,3 kW

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 27.11.2025

Ref: 72609

Cadre profilé T130, 2 étages

Largeur x Hauteur x Profondeur = 1242 x 730 x 300 mm

Caractéristiques techniques :

- Hauteur : 73 cm - Largeur : 124 cm - Profondeur : 30 cm