

LEYBOLD®

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 13.12.2025

Ref: 736091

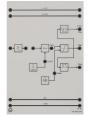
Démodulateur PTM (MIT), démodulations d'impulsions dans le temps PPM (MIP) et PDM (MID) en PAM (MIA)

Le démodulateur PTM (MIT) reconvertit les modulations d'impulsions dans le temps PPM (MIP) et PDM (MID) en PAM (MIA).

C'est par démodulation par filtres passe-bas que le signal initial est finalement reconstitué à partir de la PAM. Le démodulateur PTM est équipé de:

conformateur d'impulsions d'entrée, circuit de sectionnement pour la synchronisation et les données utiles, étage d'échantillonnage et de maintien, générateur d'impulsions en dents de scie, filtre démodulateur.

Caractéristiques techniques: Signal d entrée: max. 20 V cc


Filtre démodulateur: env. 100 Hz...3,4 kHz

Tension d'alimentation: ± 15 V CC

Options

Ref: 736081

Modulateur PTM pour l'étude des modulations d'impulsions dans le temps PDM (MID) et PPM (MIP)

A partir du signal modulant,il est généré une modulation d'impulsions en durée PDM par le pas intermédiaire de l'échantillonnage (établissement d'une PAM(MIA)) selon le procédé des impulsions en dents de scie. Une différentiation finale du signal PDM donne la modulation d'impulsions en phase.

L'information nécessaire pour la synchronisation du récepteur est transmise avec les données utiles pour les deux modulations d'impulsions dans le temps.

Le modulateur PTM (MIT) est équipé de:

filtre d'entrée, étage d'échantillonnage et de maintien, générateur d'impulsions, générateur d'impulsions en dents de scie, comparateur, différentiateur et conformateur d'impulsions.

SYSTEMES DIDACTIQUES s.a.r.l.

LEYBOLD®

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 13.12.2025

Caractéristiques techniques: Fréquence d échantillonnage: 10 kHz Ecart de temps: ± 60 % pour ± 10 V rapporté à la durée d'impulsion en cas d'absence de signal d'entrée Excursion de phase: ± 15 µs pour ± 10 V rapporté au flanc descendant du signal de synchronisation Filtre d'entrée: env. 100 Hz...3,4 kHz max. 20 Vcc