

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 13.12.2025

Ref: 554866

Tube à rayon X, Au avec anode en or

Tube à cathode chaude incandescente à chauffage direct avec filetage pour composant de refroidissement et culot à broches bipolaire pour le chauffage de la cathodeconvient pour lappareil à rayons X (554 800 et 554 801)

Caractéristiques techniques :
Matériau de l'anodeor
Rayonnement caractéristiqueAu-La = 128(9,71Au-Lß = 108(11,4 keV)
Courant d'émission max.1
Tension d'anode max.35
Taille de la tâche focaleenv. 2²
Longévité minimale300
Diamètre4,5
Longueur20
Masse0,3

Options

LEYBOLD®

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 13.12.2025

Ref: 554800

Appareil de base à rayons X

Appareil de base livré sans tube et sans goniomètre. (554831)

Appareil de base, ajusté et prêt à l'emploi pour tous les tubes Molybdène (554 861) Cuivre (554 862) Fer (554 863) Tungstène (554 864) Argent (554 865), mais livré sans tube et sans goniomètre (554 831).

Caractéristiques techniques :

voir 554 801

Caractéristiques techniques :

Dispositif à rayons X pour l'enseignement et appareil à protection totale avec l'homologation BFS 05/07 V/Sch RöV (permet l'utilisation avec des tubes interchangeables au Fe, Cu, Mo, Ag, W, Au)

Taux de dose à une distance de 10 cm : < 1 µS/h

Respectivement deux circuits de sécurité indépendants et surveillés pour les portes, la haute tension et le courant du tube (certifié par le TÜV Rheinland et conforme aux exigences pour les essais de type PTB 2005)

Verrouillage automatique de la porte : l'ouverture est seulement possible lorsque plus aucun rayonnement X n'est généré (certifié par le TÜV Rheinland et conforme aux exigences pour les essais de type PTB 2005)

Haute tension du tube : 0 ... 35,0 kV (tension continue régulée)

Courant du tube : 0 ... 1,00 mA (courant continu régulé de manière indépendante)

Tube à rayons X visible avec anode au molybdène pour un rayonnement caractéristique à ondes courtes : K a = 17.4 keV (71.0 pm), K Ω = 19.6 keV (63.1 pm)

Écran luminescent pour des expériences de radiographie : d = 15 cm

Indicateur de valeur moyenne intégré, avec l'alimentation en tension pour le compteur de Geiger-Müller

Haut-parleur : activable pour le suivi acoustique du taux de comptage

Deux affichages à 4 chiffres (25 mm de haut) pour la visualisation au choix des valeurs actuelles de la haute tension, du courant anodique, du taux de comptage, de l'angle de la cible ou du capteur, du domaine de balayage, du pas de progression, du temps de porte

Réalisation des essais dans la partie expérimentation : câble coaxial haute tension, câble coaxial BNC, canal vide, par ex. pour des tuyaux, câbles, etc.

Sorties analogiques : proportionnellement à l'angle de la cible et au taux de comptage pour la connexion de l'enregistreur

Port USB pour le branchement du PC pour l'acquisition des données, la commande et l'exploitation de l'expérience, par ex. à l'aide du logiciel Windows fourni

Pilotes LabView et MATLAB pour Windows disponibles gratuitement sous http://www.ld-didactic.com pour ses propres mesures et commandes

Tension d'entrée : 230 V ±10 % / 47 ... 63 Hz

Consommation: 120 VA

Dimensions: 67 cm x 48 cm x 35 cm

Masse: 41 kg

Matériel livré : Appareil de base

Plaque de protection pour l'écran

Housse de protection

Câble USB

Logiciel CASSY LAB 2 pour machine à rayon X pour Windows 2000/XP/Vista/7/8/10 (524 223)

Liste des TP pouvant être réalisés:

LEYBOLD®

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 13.12.2025

- P6.3.1.1 Fluorescence d'un écran luminescent par rayons X
- P6.3.1.3 Mise en évidence de rayons X avec une chambre d'ionisation
- P6.3.1.4 Détermination du débit de dose ionique de tubes à rayons X avec anode en molybdène
- P6.3.1.5 Etude d'un modèle d'implantation (en)
- P6.3.1.6 Influence d'un agent contrasté sur l'absorption de rayons X (en)
- P6.3.2.1 Étude de l'atténuation de rayons X en fonction du matériau d'absorption et de l'épaisseur d'absorption
- P6.3.2.2 Etude du coefficient d'atténuation en fonction de la longueur d'onde
- P6.3.2.3 Etude du coefficient d'atténuation en fonction du nombre atomique Z
- P6.3.5.1 Enregistrement et calibrage d'un spectre d'énergie de rayons X
- P6.3.5.2 Enregistrement du spectre d'énergie d'une anode en molybdène
- P6.3.5.3 Enregistrement du spectre d'énergie d'une anode en cuivre
- P6.3.5.4 Étude de spectres caractéristiques en fonction du numéro atomique de l'élément : les raies K
- P6.3.5.5 Etude de spectres caractéristiques en fonction du numéro atomique de l'élément : Les couches L
- P6.3.5.6 Réflexion de Bragg dissoute par l'énergie à différents ordres de diffraction
- P6.3.6.1 Structure fine du faisceau du rayon X caractéristique d'une anode en molybdène
- P6.3.6.11 Structure fine à haute résolution des rayons X caractéristiques d'une anode en molybdène
- P6.3.6.12 Structure fine