

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 13.12.2025

Ref: 5548291

Rail de précision pour capteur image pour machine à rayon X

LEYBOLD

Pour le positionnement et l'ajustage précis du capteur pour radiographie (554828) dans l'appareil à rayons X (554800 ou 55481).

Le banc d'optique permet un positionnement libre du capteur d'images dans la partie expérimentation de l'appareil à rayons X.

À titre d'exemple, des clichés de Laue peuvent être conçus directement derrière le collimateur ou des séries d'images tomodensitométriques peuvent être prises à l'autre extrémité du banc d'optique.

Lorsque le centre du capteur pour radiographie est exactement positionné derrière l'axe de rotation du goniomètre à l'aide du mécanisme de réglage fin, les conditions sont réunies pour obtenir une série d'images tomodensitométriques à haute résolution.

La version de démonstration fournie du logiciel Tomodensitométrie permet de réaliser des radiographies à haute résolution et de les enregistrer avec une profondeur élevée (16 bits en niveaux de gris) ; elle convient à une utilisation dans les domaines de la radiographie, de la radiologie, du contrôle des matériaux et de la cristallographie (clichés de Laue).

La version Pro du logiciel (554820) convient quant à elle pour la tomodensitométrie.

Caractéristiques techniques : Longueur du banc d'optique : 30 cm

Réglage en hauteur du capteur : 0,1 pixel de capteur par graduation Réglage de l'inclinaison du capteur : 1 pixel de capteur par rotation à 45°

Dimensions: 30 cm x 15 cm x 17 cm

Masse: 1,2 kg

Matériel livré : Banc d'optique

Support de capteur sur cavalier avec mécanisme de réglage fin pour un ajustage en hauteur précis

Version de démonstration du logiciel Tomodensitométrie

Catégories / Arborescence

Sciences > Physique > Produits > Physique atomique et nucléaire > Appareil à rayons X > Accessoires

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 13.12.2025

Options

Ref: 5548281

Capteur pour radiographie tomographique rayons X, interface Ethernet

Surface du capteur : 57 mm x 64 mm, Résolution 1152x1300 pixels niveaux de gris 14 bits

Capteur d'image compacte à haute résolution avec connexion Ethernet pour la prise direct de radiographies dans un appareil à rayons X sous des conditions d'éclairage naturel (sans film radiographique ou écran luminescent). Avec le chariot de positionnement de précision (554 8291), le capteur digital constitue une caméra performante pour la radiographie, la radiologie, la cristallographie et la tomodensitométrie, utilisée dans le cadre d'expériences pratiques et de démonstration dans les établissements d'enseignement supérieur.

Les radiographies peuvent être enregistrées en tant qu'image à niveaux de gris en haute résolution ou utilisées par le logiciel de tomodensitométrie pour la reconstruction en 3D de l'objet irradié.

Une telle reconstruction s'effectue en direct durant la prise d'images en l'espace de quelques minutes.

Le capteur est positionnée à l'aide du chariot de positionnement de précision (554 8291) dans la partie expérimentation de l'appareil à rayons X.

Il prend indirectement la radiographie en transformant le rayon X, à l'aide d'une feuille de scintillateur, dans une image analogique intermédiaire visible, puis celle-ci est numérisée avec un capteur CMOS à grande surface.

Les capteurs CMOS utilisés ont déjà fait leur preuve à de multiples reprises et sont employés depuis plus d'une décennie dans l'industrie, notamment pour le contrôle des matériaux sans destruction, le contrôle de la production et la technique médicale.

Installés dans un appareil à rayons X, ils permettent également de réaliser des images radiographiques à haute résolution, voire des séries d'images tomodensitométriques.

Pour le logiciel de démonstration et les vidéos, rendez-vous sur : http://www.ld-didactic.de

Caractéristiques techniques:

Surface du capteur : 57 mm x 64 mm (CMOS, protégée pour une durée de vie accrue)

Résolution: 1152 pixels x 1300 pixels x niveaux de gris 14 bits

Taille de pixel : 49,5 μm x 49,5 μm

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 13.12.2025

Boîtier: acier inoxydable Interface: Gigabit Ethernet

Raccordement: connecteur RJ45

Dimensions: 105 mm x 140 mm x 24 mm

Masse : 740 g

Contenu livré Capteur d'image Câble RJ 45•

Bloc d'alimentation (100 ... 240 V AC, 50/60 Hz)

Complément nécessaire:

1 554 8291 Chariot de positionnement de précision du capteur pour radiographie

Complément conseillé:

- 1 554 820 Logiciel Tomodensitométrie ProLD
- 1 554 826 Accessoires pour la tomodensitométrieLD
- 1 554 827 Lunettes en 3D rouge et cyanLD
- 1 554 8282 Bouclier pour capteur pour radiographie

Ref: 554800

Appareil de base à rayons X

Appareil de base livré sans tube et sans goniomètre. (554831)

Appareil de base, ajusté et prêt à l'emploi pour tous les tubes Molybdène (554 861) Cuivre (554 862) Fer (554 863) Tungstène (554 864) Argent (554 865), mais livré sans tube et sans goniomètre (554 831).

Caractéristiques techniques :

voir 554 801

Caractéristiques techniques :

Dispositif à rayons X pour l'enseignement et appareil à protection totale avec l'homologation BFS 05/07 V/Sch RöV (permet l'utilisation avec des tubes interchangeables au Fe, Cu, Mo, Ag, W, Au)

Taux de dose à une distance de 10 cm : < 1 μS/h

Respectivement deux circuits de sécurité indépendants et surveillés pour les portes, la haute tension et le courant du tube (certifié par le TÜV Rheinland et conforme aux exigences pour les essais de type PTB 2005)

Verrouillage automatique de la porte : l'ouverture est seulement possible lorsque plus aucun rayonnement X n'est généré (certifié par le TÜV Rheinland et conforme aux exigences pour les essais de type PTB 2005)

Haute tension du tube : 0 ... 35,0 kV (tension continue régulée)

Courant du tube : 0 ... 1,00 mA (courant continu régulé de manière indépendante)

Tube à rayons X visible avec anode au molybdène pour un rayonnement caractéristique à ondes courtes : Ka = 17.4 keV (71.0 pm), KB = 19.6 keV (63.1 pm)

Écran luminescent pour des expériences de radiographie : d = 15 cm

Indicateur de valeur moyenne intégré, avec l'alimentation en tension pour le compteur de Geiger-Müller

Haut-parleur : activable pour le suivi acoustique du taux de comptage

Deux affichages à 4 chiffres (25 mm de haut) pour la visualisation au choix des valeurs actuelles de la haute tension, SYSTEMES DIDACTIQUES s.a.r.l.

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 13.12.2025

du courant anodique, du taux de comptage, de l'angle de la cible ou du capteur, du domaine de balayage, du pas de progression, du temps de porte

Réalisation des essais dans la partie expérimentation : câble coaxial haute tension, câble coaxial BNC, canal vide, par ex. pour des tuyaux, câbles, etc.

Sorties analogiques : proportionnellement à l'angle de la cible et au taux de comptage pour la connexion de l'enregistreur

Port USB pour le branchement du PC pour l'acquisition des données, la commande et l'exploitation de l'expérience, par ex. à l'aide du logiciel Windows fourni

Pilotes LabView et MATLAB pour Windows disponibles gratuitement sous http://www.ld-didactic.com pour ses propres mesures et commandes

Tension d'entrée : 230 V ±10 % / 47 ... 63 Hz

Consommation: 120 VA

Dimensions: 67 cm x 48 cm x 35 cm

Masse: 41 kg

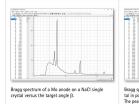
Matériel livré : Appareil de base Plaque de protection pour l'écran House de protection

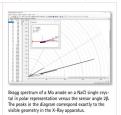
Câble USB

Logiciel CASSY LAB 2 pour machine à rayon X pour Windows 2000/XP/Vista/7/8/10 (524 223)

Liste des TP pouvant être réalisés:

- P6.3.1.1 Fluorescence d'un écran luminescent par rayons X
- P6.3.1.3 Mise en évidence de rayons X avec une chambre d'ionisation
- P6.3.1.4 Détermination du débit de dose ionique de tubes à rayons X avec anode en molybdène
- P6.3.1.5 Etude d'un modèle d'implantation (en)
- P6.3.1.6 Influence d'un agent contrasté sur l'absorption de rayons X (en)
- P6.3.2.1 Étude de l'atténuation de rayons X en fonction du matériau d'absorption et de l'épaisseur d'absorption
- P6.3.2.2 Etude du coefficient d'atténuation en fonction de la longueur d'onde
- P6.3.2.3 Etude du coefficient d'atténuation en fonction du nombre atomique Z
- P6.3.5.1 Enregistrement et calibrage d'un spectre d'énergie de rayons X
- P6.3.5.2 Enregistrement du spectre d'énergie d'une anode en molybdène
- P6.3.5.3 Enregistrement du spectre d'énergie d'une anode en cuivre
- P6.3.5.4 Étude de spectres caractéristiques en fonction du numéro atomique de l'élément : les raies K
- P6.3.5.5 Etude de spectres caractéristiques en fonction du numéro atomique de l'élément : Les couches L
- P6.3.5.6 Réflexion de Bragg dissoute par l'énergie à différents ordres de diffraction
- P6.3.6.1 Structure fine du faisceau du rayon X caractéristique d'une anode en molybdène
- P6.3.6.11 Structure fine à haute résolution des rayons X caractéristiques d'une anode en molybdène
- P6.3.6.12 Structure fine


Equipement pour l'enseignement expérimental, scientifique et technique


Date d'édition : 13.12.2025

Ref: 554801

Appareil à rayons X Mo, complet / Avec : Tube de molybdène, Goniomètre (554831), Cristal NaCl (55478), Film de Zircon, Logiciel, Câble USB, Housse, Plaque de protection

Appareil complet commandé par microprocesseur avec tube de Mo et goniomètre pour la réalisation de nombreuses expériences du domaine de la physique des rayons X.

Une partie génération de haute tension, un tube à rayons X et une partie expérimentation sont regroupés dans un boîtier parfaitement clos et protégés contre les rayonnements.

L'appareil est homologué comme dispositif à rayons X pour l'enseignement et appareil à protection totale.

L'homologation est également valable pour d'autres tubes (Fe, Cu, Ag, W, Au) livrés ajustés, prêts à l'emploi, en vue d'un changement aisé.

Une sécurité optimale et un grand confort d'utilisation sont garantis par un système de verrouillage qui déverrouille automatiquement les portes lorsque plus aucun rayonnement X n'est généré.

Deux grands affichages donnent des informations exhaustives sur l'expérience en cours.

La tension et le courant du tube sont réglables respectivement de 0 à 35 kV et de 0 à 1 mA.

Utilisé avec l'indicateur de valeur moyenne intégré, l'appareil à rayons X permet la mesure directe avec un tube compteur Geiger-Müller (559 01).

Pour relever des spectres de Bragg, il suffit de le brancher à un PC (logiciel inclus au matériel livré) via un port USB.

Une alternative consiste à recourir aux deux sorties analogiques (taux de comptage et position angulaire) qui permettent, quant à elles, d'enregistrer les données avec un enregistreur.

Le goniomètre (554 831) permet d'adopter manuellement les diverses positions angulaires prévues pour le capteur et la cible ; le capteur et la cible couplés dans un rapport 2 : 1 peuvent également être déplacés manuellement ou pour le balayage automatique d'un domaine angulaire.

La partie expérimentation est accessible par l'intermédiaire de deux conduites coaxiales blindées ainsi que par un canal libre, par ex. pour la connexion d'un détecteur d'énergie de rayonnement X entraîné par un goniomètre. L'appareil est assemblé et ajusté, prêt à l'emploi.

Caractéristiques techniques :

Dispositif à rayons X pour l'enseignement et appareil à protection totale avec l'homologation BFS 05/07 V/Sch RöV (permet l'utilisation avec des tubes interchangeables au Fe, Cu, Mo, Ag, W, Au)

Taux de dose à une distance de 10 cm : $< 1 \mu S/h$

Respectivement deux circuits de sécurité indépendants et surveillés pour les portes, la haute tension et le courant du tube (certifié par le TÜV Rheinland et conforme aux exigences pour les essais de type PTB 2005)

Verrouillage automatique de la porte : l'ouverture est seulement possible lorsque plus aucun rayonnement X n'est généré (certifié par le TÜV Rheinland et conforme aux exigences pour les essais de type PTB 2005)

Haute tension du tube : 0 ... 35,0 kV (tension continue régulée)

Courant du tube : 0 ... 1,00 mA (courant continu régulé de manière indépendante)

Tube à rayons X visible avec anode au molybdène pour un rayonnement caractéristique à ondes courtes : K a = 17,4 keV (71,0 pm), K ß = 19,6 keV (63,1 pm)

Écran luminescent pour des expériences de radiographie : d = 15 cm

Indicateur de valeur moyenne intégré, avec l'alimentation en tension pour le compteur de Geiger-Müller

Haut-parleur : activable pour le suivi acoustique du taux de comptage

Deux affichages à 4 chiffres (25 mm de haut) pour la visualisation au choix des valeurs actuelles de la haute tension, du courant anodique, du taux de comptage, de l'angle de la cible ou du capteur, du domaine de balayage, du pas de progression, du temps de porte

Goniomètre (554 831) commandé par moteur pas à pas Modes de fonctionnement : réglage manuel et balayage automatique pour le capteur seul, la cible seule, couplage 2 : 1 Plage angulaire : illimitée (de 0° à 360°) pour la cible, de -10° à +170° pour le capteur Pas de progression : 0,1° SYSTEMES DIDACTIQUES s.a.r.l.

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 13.12.2025

Minuterie d'exposition, temps de porte : 0,5 s ... 9999 s

Réalisation des essais dans la partie expérimentation : câble coaxial haute tension, câble coaxial BNC, canal vide, par ex. pour des tuyaux, câbles, etc.

Sorties analogiques : proportionnellement à l'angle de la cible et au taux de comptage pour la connexion de l'enregistreur

Port USB pour le branchement du PC pour l'

Produits alternatifs

Ref: 554820P1

Equipement complet pour tomographie par Rayons X PRO: capteur, logiciel, support...

Contient 554820 - 554826 - 554827 - 5548281 - 5548291

Contient:

554820 : Logiciel Tomodensitométrie Pro

Pour le calcul de séries d'images TDM à l'aide du module de tomodensitométrie (554 821) ou du capteur pour radiographie X (554 8281 ou 554 828) et de l'appareil à rayons X (554 801 ou 554 811USB).

Pour prendre des radiographies, l'appareil à rayons X est dirigé dans des incréments angulaires sélectionnables. Le processus de rétroprojection est déjà visualisé, au choix, en deux ou trois dimensions lors de la prise de vue. On obtient ainsi des images en coupe et des images 3D de l'objet 3D encore inachevé à l'aide de tous les outils de visualisation (rotation, zoom, effets de transparence, coupes, représentation stéréoscopique, illumination similaire au modèle de tracé de rayons de Heidelberg).

Le processus de rétroprojection complète avec chaque nouvel incrément angulaire supplémentaire l'objet 3D finalement terminé.

Malgré la basse énergie de rayonnement d'un appareil de rayons X scolaire de 35 keV, il est possible de prendre les série d'images tomodensitométriques de différents objets, dans une bonne résolution tant sur le plan qualitatif que quantitatif. L'accent est mis sur la préparation didactique de la prise de vue et de son exploitation.

Une licence de ce logiciel limitée au module de tomodensitométrie (554 821) est fournie avec celui-ci.

Retrouvez la version de démonstration de ce logiciel et des vidéos sur HTTP://WWW.LD-DIDACTIC.DE/INDEX.PHP?ID=CT.

Prérequis matériel :

PC avec Windows 7/8/10 (x86 ou x64)

Processeur Dual Core 2.4 GHz

3 Go de mémoire RAM

Carte graphique 3D avec 1 Go de mémoire RAM (classe moyenne)

Port USB 2.0

Connecteur RJ45

Configuration recommandée pour de plus grandes séries d'images tomodensitométriques :

PC avec Windows 10 (x64)

Processeur Quad-Core 3 GHz

8 Go de mémoire RAM

Carte graphique 3D avec 3 Go de mémoire RAM (classe performante)

Port USB 2.0

Connecteur RJ45

Caractéristiques:

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 13.12.2025

Commande : appareil à rayons X, goniomètre et capteur d'images via USB Nombre de projections : 1/4/15/45/90/180/360/720 images par série

Précision angulaire : jusqu'à 0,5°

Taille de la série d'images tomodensitométriques : 200 ... 940 pixels par dimension (8 ... 830 mégapixels)

Versions: 32 bits et 64 bits (pour de plus grandes séries d'images TDM)

554826 : Accessoires pour la tomodensitométrie (Adaptateur lego 555825, Jeux de briques lego, Objet petit animal

lyophilisé, Cuvette (par ex. pour l'eau), Plaque en aluminium pour durcir le rayonnement),

554827 : Lunettes en 3D rouge et cyan,

5548281 : Capteur d'image compact haute résolution avec connexion Ethernet

Capteur d'image compacte à haute résolution avec connexion Ethernet pour la prise direct de radiographies dans un appareil à rayons X sous des conditions d'éclairage naturel (sans film radiographique ou écran luminescent).

Avec le chariot de positionnement de précision (554 8291), le capteur digital constitue une caméra performante pour la radiographie, la radiologie, la cristallographie et la tomodensitométrie, utilisée dans le cadre d'expériences pratiques et de démonstration dans les établissements d'enseignement supérieur.

Les radiographies peuvent être enregistrées en tant qu'image à niveaux de gris en haute résolution ou utilisées par le logiciel de tomodensitométrie pour la reconstruction en 3D de l'objet irradié.

Une telle reconstruction s'effectue en direct durant la prise d'images en l'espace de quelques minutes.

Le capteur est positionnée à l'aide du chariot de positionnement de précision (554 8291) dans la partie expérimentation de l'appareil à rayons X.

Il prend indirectement la radiographie en transformant le rayon X, à l'aide d'une feuille de scintillateur, dans une image analogique intermédiaire visible, puis celle-ci est numérisée avec un capteur CMOS à grande surface.

Les capteurs CMOS utilisés ont déjà fait leur preuve à de multiples reprises et sont employés depuis plus d'une décennie dans l'industrie, notamment pour le contrôle des matériaux sans destruction, le contrôle de la production et la technique médicale. Installés dans un appareil à rayons X, ils permettent également de réaliser des images radiographiques à haute résolution, voire des séries d'images tomodensitométriques.

Pour le logiciel de démonstration et les vidéos, rend