

LEYBOLD®

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 15.12.2025

Ref: 33-007I

Twin Rotor MIMO - Système non linéaire à double rotor

sans carte PCI - Nécessite logiciel MATLAB (non fourni)

Identique à l'article 33-007-PCI sans la catre PCI Advantéch 1711/0

Le système à double rotor montre les bases d'un système non linéaire avec couplage croisé.

Son comportement est similaire à un hélicoptère, mais l'angle d'attaque du rotor est fixe et les forces aérodynamiques peut être contrôlées en changeant la vitesse du moteur (appliquable pour Matlab, y compris la carte d'interface MATLAB® et câble).

Caractéristiques

Système classique multi-tailles.

Analyse dynamique.

Identification de modèles discrets.

Conception, test et implantation des contrôleurs dans des applications temps réel.

Modélisation des différentes stratégies de contrôle.

Processus non linéaires.

Reconnaissance des boucles fermées.

Thèmes d'apprentissage

Stabilisation PID et suivi Contrôle horizontal. Stabilisation PID, 1 degré de liberté (DDL) et commande de suivi de la direction vertical avec compensation du centre de gravité.

Contrôle de stabilisation et de poursuite PID 2-DDL. Paramétrage.

Réglage de paramètres.

Analyse dynamique couplée.

Découplage dynamique.

Analyse phénoménologique.

Caractéristiques techniques :

Dimensions: Largeur 800 mm x profondeur 350 mm x hauteur 750 mm

Poids: 11 kgs

Livraison:

- la maquette Twin Rotor
- le boîtier SCSI adapateur
- le câble pour la carte PCI (non fournie)

En option:

Same requirements as for 33-007-PCI, additionally an appropriate PCI interface card.

LEYBOLD®

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition: 15.12.2025

Produits alternatifs

Ref: 33-007-PCI

Twin Rotor MIMO - Système non linéaire à double rotor, Nécessite logiciel MATLAB non fourni Carte interface PCI 1x168PIN 175x100 mm et câbles pour MATLAB(tm) fournis. Doc. en anglais

Le système à double rotor montre les bases d'un système non linéaire avec couplage croisé.

Son comportement est similaire à un hélicoptère, mais l'angle d'attaque du rotor est fixe et les forces aérodynamiques peut être contrôlées en changeant la vitesse du moteur (applicable pour Matlab, y compris la carte d'interface MATLAB® et câble).

Caractéristiques

Système classique multi-tailles.

Analyse dynamique.

Identification de modèles discrets.

Conception, test et implantation des contrôleurs dans des applications temps réel.

Modélisation des différentes stratégies de contrôle.

Processus non linéaires.

Reconnaissance des boucles fermées.

Thèmes d'apprentissage

Stabilisation PID et suivi Contrôle horizontal. Stabilisation PID, 1 degré de liberté (DDL) et commande de suivi de la direction vertical avec compensation du centre de gravité.

Contrôle de stabilisation et de poursuite PID 2-DDL. Paramétrage.

Réglage de paramètres.

Analyse dynamique couplée.

Découplage dynamique.

Analyse phénoménologique.

Caractéristiques techniques :

Dimensions: Largeur 800 mm x profondeur 350 mm x hauteur 750 mm

Poids: 11 kgs

Equipement pour l'enseignement expérimental, scientifique et technique

Date d'édition : 15.12.2025

Matériel livré :

- la maquette Twin Rotor,
- le boîtier SCSI adapateur,
- le câble pour la carte PCI,
- Carte d'interface Advantech 1711/U,

En option:

Supplément requis:

MATLAB modèles pour Ensemble de deux rotors MIMO (33-949-SW)

PC avec un système d'exploitation Windows (non fourni) adaptable (Win 7 ou Win 10, 64bit) avec la version MATLAB choisie par l'utilisateur et un emplacement PCI.

MATLAB ver 8.6 (2015ba) pour Win 7 ou ver 9.2 (2017a) ou ultérieure sont prises en charge (non fournis).

Le toolbox de MATLAB doit inclure: - Simulink, Système de régulation, système d'Identification, Target Windows temps-réel, Matlab Coder, Simulink Coder (non fournis)